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Introduction and Motivation



Introduction

In recent years, a large body of work has focused on making machine learning systems more

fair [3].

▶ broader societal shift towards more ethical

algorithms.

▶ Applications in online advertisement [21],

recommender systems [1, 5], wireless

network optimization.

▶ Example: in wireless scheduling with

multiple QoS classes, fairness ensures

users in each class meet their specific

performance requirements.
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Problem Setting and Related

Work



Multi-Armed Bandit Problem

K arms with Gaussian reward distributions N (θa, 1) with a ∈ {1, . . . ,K}.

θ1 θ2 θ3 θ4 θ5

▶ Sequential:In round t the learner pulls arm at ∈ [K] and receives the reward

rt ∼ N (θa, 1).

▶ Best Arm Identification objective: quickly find the optimal arm a⋆ = argmaxa θa with

confidence δ ∈ (0, 1)⇒ minimize sample complexity E[τ ] subject to P(âτ ̸= a⋆) ≤ δ.

▶ τ is a random stopping time and âτ is the estimated best arm at τ .

▶ Caveat: we want to be fair! How? In what way?
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▶ τ is a random stopping time and âτ is the estimated best arm at τ .
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Fairness in Bandit Problems

In MAB problems, fairness has been investigated in different bandit settings[12, 14, 11, 9]:

▶ Many different notions of fairness, most of which fall into the following categories:

(I) pre-specified fairness; (II) individual fairness; (III) counterfactual fairness and (IV)

group fairness [7].

▶ Other important works consider the α-fairness criterion [2] for fair resource allocation,

which encompasses different fairness criteria when varying the value of the parameter α:

▶ Max-min fairness: allocates resources as equally as possible.
▶ Proportional fairness: allocates resources in a proportional manner [19, 20, 18].
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Fairness in Bandit Problems

▶ Selection with pre-specified values of fairness: the rate at which an algorithm selects an

arm a stays within a pre-specified range [p0, p1]. These constraints are, in general,

model-agnostic.

▶ Example of asymptotic fairness [14]:

lim inf
T→∞

E
ï
Na(T )

T

ò
≥ pa ∀a ∈ [K].

where Na(T ) is the number of times the algorithm selected action a up to time T .
▶ [16] define an algorithm to be η-fair if

⌊pat⌋ −Na(t) ≤ η,∀t ∈ [T ],∀a ∈ [K].

▶ Notably, a fair UCB algorithm guarantees Reg(T ) ≤ (1+π2/3)
∑

a̸=a⋆ ∆a (constant regret).
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▶ Individual and proportional fairness: requires a system to make comparable decisions for

similar individuals, and the constraints could be based on similarity or merit [12] – these
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θ1−α
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log(θ) α = 1.

▶ For α → ∞ we obtain max-min fairness: allocate resources equally.
▶ For α = 0 we obtain the greedy solution.
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Fair Best Arm Identification - Constraints type

What we study

1. Pre-specified constraints: the selection rate at the random stopping time τ , needs be

larger than some pre-specified value pa ∈ [0, 1]:

Eθ[Na(τ)]

Eθ[τ ]
≥ pa,∀a ∈ [K].

2. θ-dependent constraints: asymptotically, as δ → 0, the selection rate at the stopping time

τ needs to be larger than some θ-dependent continuous function pa(θ) : RK → [0, 1]:

lim inf
δ→0

Eθ[Na(τ)]

Eθ[τ ]
≥ pa(θ),∀a ∈ [K].

3. Example: p(θ) = p0 · softmax(θ) for some p0 ∈ [0, 1] (with pa(θ) = (p(θ))a).
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p-fair δ-Probably Correct Algorithm

Definition

▶ An algorithm is p-fair δ-PC (Probably Correct) if for all θ ∈ Θ, δ ∈ (0, 1/2), it satisfies

(i)
Eθ[Na(τ)]

Eθ[τ ]
≥ pa,∀a ∈ [K], (ii) Pθ(âτ ̸= a⋆) ≤ δ, (iii) Pθ(τ <∞) = 1. (1)

▶ Similarly, we say an algorithm is asymptotically p(θ)-fair δ-PC if it satisfies

(i) lim inf
δ→0

Eθ[Na(τδ)]

Eθ[τδ]
≥ pa(θ),∀a ∈ [K], (ii) Pθ(âτ ̸= a⋆) ≤ δ, (iii) Pθ(τ <∞) = 1.

(2)
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Main Result: Sample Complexity

Lower Bound



Sample Complexity Lower Bound

▶ Define the characteristic time

T ⋆
p = 2 inf

w∈Σp

max
a̸=a⋆

w−1
a + w−1

a⋆

∆2
a

,

where Σp = {w ≥ p :
∑

a∈[K] wa = 1} is the clipped simplex.
▶ wa is the optimal static rate at which the agent should select arm a.
▶ ∆a = θa⋆ − θ is the sub-optimality gap in a.

▶ The characteristic time T ⋆
p represents the difficulty of identifying the best arm.

▶ It is derived using hypothesis-testing argument. Consider a trajectory τ = (a1, r1, . . . , at, rt):

is this data generated using the true model θ or a confusing one θ′?
▶ Construct the log-likelihood ratio Lt = log dPθ(τ)

dPθ′ (τ)
.

▶ Find θ′ by minimizing

min
θ′

Eθ[Lτ ] = min
θ′

∑
a

Eθ[Na(τ)]KL(Pθa , Pθ′a) = Eθ[τ ]min
θ′

∑
a

Eθ[Na(τ)]

Eθ[τ ]︸ ︷︷ ︸
=:wa

KL(Pθa , Pθ′a)

over models θ′ that admits a different optimal action.
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Sample Complexity Lower Bound

▶ Define the characteristic time
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p = 2 inf

w∈Σp

max
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w−1
a + w−1

a⋆

∆2
a

,

where Σp = {w ≥ p :
∑

a∈[K] wa = 1} is the clipped simplex.

▶ The characteristic time T ⋆
p represents the difficulty of identifying the best arm.

Theorem

▶ Any p-fair δ-PAC algorithm satisfies

Eθ[τ ]

log(1/2.4δ)
≥ T ⋆

p ∀θ ∈ Θ.

▶ Any asymptotically p(θ)-fair δ-PAC algorithm satisfies

lim inf
δ→0

Eθ[τ ]

log(1/δ)
≥ T ⋆

p ∀θ ∈ Θ.
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Cost of Fairness

Lemma

For a set of fairness constraints p = (pa)a∈[K], and for all θ ∈ Θ, we have that

1 ≤ T ⋆
p

T ⋆
0

≤ O

Å
min

Å
1

1− psum
,

1

Kpmin

ãã
. (3)

where psum =
∑

a pa and pmin = mina:pa>0 pa.

▶ T0 denotes the characteristic time with p = 0 (no fairness constraints).

▶ Price of fairness typically scales as (1− psum)
−1 or (pmin)

−1!
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F-TaS: Fair Track and Stop

We propose F-TaS, an (asymptotically) p-fair and δ-PAC algorithm. It consists of (i) a

sampling rule and (ii) a stopping rule.
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F-TaS: Sampling Rule

Sampling Rule

The fundamental idea is that the lower bound provides you w, the optimal way to sample

actions (i.e., sample a ∼ w), where w is computed according to

T ⋆
p = 2 min

w∈Σp

max
a̸=a⋆

w−1
a + w−1

a⋆

∆2
a

▶ But we don’t know ∆a! We plug-in the estimate ∆a(t) at time t:

w⋆
p(t) = argmin

w∈Σp

max
a̸=a⋆

t

w−1
a + wa⋆

t
(t)−1

∆a(t)2

▶ Σp depends on θ(t) (the estimate at time t of the means) in the θ-dependent constraints.

▶ To ensure θ(t)→ θ we mix w⋆
p(t) with a constant policy πc = (πc,a)a∈[K], using a

parameter ϵt (forced exploration policy).
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F-TaS: Stopping Rule

Stopping Rule

The stopping rule should stop as soon as we are confident of the best arm. Stop as soon as

t
∼
> T ⋆

p (t) log

Å
1 + log(t)

δ

ã
,

where T ⋆
p (t) is the estimate at time t of T ⋆

p , computed as

T ⋆
p (t) := 2max

a̸=a⋆
t

wa(t)
−1 + wa⋆

t
(t)−1

∆a(t)2
, wa(t) :=

Na(t)

t
.
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F-TaS: Fair Track and Stop

Algorithm 1 F-TaS

1: Input: Fairness vector p = (pa)a∈[K]; confidence δ; forced exploration schedule (ϵt)t.

2: Set t← 1

3: while t ≤ T ⋆
p (t) log

Ä
1+log(t)

δ

ä
do

4: Compute w⋆
p(t) = minw∈Σp

maxa ̸=a⋆
t

wa(t)
−1+wa⋆

t
(t)−1

∆a(t)2
and set π(t)← (1−ϵt)w⋆

p(t)+ϵtπc

5: Select at ∼ π(t) and observe reward rt
6: Update statistics θ̂(t), Na(t) and set t← t+ 1

7: end while

8: Return âτ = argmaxa θ̂a(τ)
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F-TaS: Guarantees

Theorem

▶ F-TaS is p-fair (resp. asymptotically p(θ)-fair) and δ-PAC.

▶ For all δ ∈ (0, 1/2), F-TaS has a finite expected sample complexity Eθ[τδ] <∞, and it

satisfies:

(1) Almost sure asymptotic optimality:

Pθ

Å
lim sup

δ→0

τ

log(1/δ)
≤ T ⋆

p

ã
= 1,

(2) Asymptotic optimality in expectation:

lim sup
δ→0

Eθ[τ ]

log(1/δ)
≤ T ⋆

p .
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Wireless Scheduling: Model

UE u

BS

Base Station (BS) and a set of K

User Equipments (UEs).

Model:

▶ At each round, t ≥ 1, the BS selects a single UE out of

the K to be scheduled for transmission.

▶ the BS represents the learner, and the set of UEs [K]

represents the various arms.

▶ The reward at round t is defined as the sum throughput

across UEs in the cell, i.e., rt =
∑

u∈[K] Tu,t1{at=u}.

▶ We compare F-TaS with Track and Stop (TaS [8]) and

Uniform Fair, an algorithm selecting an arm a in

round t with probability pa(θ̂(t)) + (1− psum(θ̂(t)))/K.
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Wireless Scheduling: Fairness

Settings: we focus on two settings to analyze how p impacts exploration:

1. agonistic fairness: promotes exploration

2. antagonistic fairness: inhibits exploration.
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Wireless Scheduling: Optimal Allocations
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Optimal action selection frequencies: w⋆ is the optimal solution to T ⋆
0 (i.e., with p = 0).
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Wireless Scheduling: Fairness Violation, θ-dependent scenario
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Fairness violation: ρ(t) = max(0,maxa pa(θ)−Na(t)/t).
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Conclusions

Lot of interest in making learning algorithms more fair:

▶ Fairness can help with exploration, or regret minimization (e.g., constant regret).

▶ How do we achieve fairness in more complex adaptive systems?

▶ How to extend to general Markov Decision Processes?

▶ Find the code here

https://github.com/rssalessio/fair-best-arm-identification

Thank you for listening!
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Introduction

Example: ML models may be biased against minorities

How do we make the control loop fair?



Fairness in Bandit Problems

▶ Traditional Bandit algorithms are not fair.

▶ Several works investigate regret

minimization [12, 14, 16, 22]:

Reg(T ) = θa⋆T − E

[
T∑

t=1

rt

]

▶ However, this aspect remains largely

unexplored within the problem of Best

Arm Identification (BAI)
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Related Work - Extended

▶ Individual fairness [6, 12] requires a system to make comparable decisions for similar

individuals, and the constraints could be based on similarity or merit [20, 15].

▶ Selection with pre-specified range [4, 16, 14] simply demands that the rate, or probability,

at which an algorithm selects an arm stays within a pre-specified range.

▶ Group fairness imposes constraints based on some statistical parity across subgroups [7].

For example, in [17] divide arms into several subgroups, and ensure that the probability of

pulling an arm is constant given the group membership. In contextual bandit problems,

one can ensure fairness among different contexts, as in [10] or between groups similarly to

the non-contextual setting [9].

▶ In [13] the authors study the concept of counterfactual fairness. Their definition captures

the idea that a decision is fair towards an individual if it is fair also in an alternative

situation where the individual belong to a different group while keeping all the other

important variables unchanged.



Sample-path fairness

▶ An alternative definition of fairness could consider constraints of the type

Eθ [Na(τδ)/τδ] ≥ pa(θ).

▶ We refer to this as ”sample-path fairness” as it evaluates fairness on each sample path.

Corollary

F-TaS is sample-path p-fair (resp. p(θ)-fair), i.e., it satisfies

▶ Eθ [Na(τδ)/τδ] ≥ pa(θ), ∀a ∈ [K].

▶ lim infδ→0 Eθ

î
Na(τδ)

τδ

ó
≥ pa(θ).

The idea is to use the fact that

Eθ[Na(τδ)]

Eθ[τδ]
≤ Eθ [Na(τδ)/τδ]− Covθ (Na(τδ), 1/τδ) .

and show that the covariance term tends to 0 as δ → 0.



Forced Exploration Policy

The constant policy πc, and the value of ϵt depend on the type of fairness constraint:

▶ Pre-specified constraints: Let K0 = |{a ∈ [K] : pa = 0}| be the number of arms for which

pa = 0. In the simple case that K0 = 0, we set πc,a = pa + (1− psum)/K. Otherwise we

set ϵt = 1/(2
√
t), and define πc as

πc,a =

{
pa pa > 0
1−psum

K0
otherwise.

▶ this constraint induces a linear exploration rate and hence we do not require any additional

forced exploration.

▶ θ-dependent constraints: in this case, we select πc,a = 1/K, i.e., a uniform policy for all

a ∈ [K], and we set ϵt = 1/(2
√
t).



Wireless Scheduling: Fairness

Settings: we focus on two settings to analyze how p impacts exploration:

1. agonistic fairness: promotes exploration

2. antagonistic fairness: inhibits exploration.

Fairness Constraints:

(i) Pre-specified constraints: we select the fairness vector as

pa = p0[αw
⋆
a + (1− α)w̄⋆

a], w̄⋆
a = (1/w⋆

a)/
∑
b∈[K]

(1/w⋆
b ).

where w⋆ is optimal for T ⋆
0 . We set α = 0.9 for the agonistic case and α = 0.1 in the

antagonistic one.

(ii) θ-dependent constraints:
▶ In the agonistic case we select the fairness functions as pa(θ) = p0

1/max(∆a,∆min)∑
b∈[K] 1/max(∆b,∆min)

▶ In the antagonistic case we select pa(θ) = p0
∆a∑

b∈[K] ∆b
.
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Wireless Scheduling: Fairness Violation, Pre-specified scenario
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Fairness violation: ρ(t) = max(0,maxa pa(θ)−Na(t)/t).



Wireless Scheduling: sample complexity results

Pre-specified constraints θ-dependent constraints

Algorithm Sample Complexity Fairness Violation Sample Complexity Fairness Violation

Agonistic Antagonistic Agonistic Antagonistic Agonistic Antagonistic Agonistic Antagonistic

δ = 0.1 F-TaS 199.10± 15.96 457.90± 48.15 3.03%± 0.39% 2.13%± 0.24% 197.80± 17.05 599.79± 68.83 4.60%± 0.43% 2.97%± 0.32%

TaS 136.88± 9.59 136.88± 9.78 6.55%± 0.68% 10.76%± 0.12% 136.88± 9.48 136.88± 9.86 5.32%± 0.36% 8.22%± 0.08%

Uniform Fair 236.50± 16.11 726.52± 85.13 2.45%± 0.37% 1.12%± 0.25% 220.07± 18.00 1889.56± 287.37 4.07%± 0.35% 1.94%± 0.48%

δ = 0.01 F-TaS 285.41± 15.74 696.11± 58.62 2.35%± 0.27% 1.79%± 0.20% 298.68± 21.88 833.55± 78.24 3.96%± 0.37% 2.38%± 0.23%

TaS 207.79± 13.53 207.79± 13.64 5.71%± 0.67% 11.14%± 0.13% 207.79± 13.84 207.79± 13.28 4.92%± 0.37% 8.55%± 0.11%

Uniform Fair 323.86± 19.23 1071.62± 91.97 1.91%± 0.29% 0.68%± 0.18% 359.49± 24.66 2853.99± 319.41 3.00%± 0.26% 1.21%± 0.40%

δ = 0.001 F-TaS 358.81± 17.44 899.13± 74.28 2.00%± 0.29% 1.60%± 0.18% 398.94± 24.53 1048.52± 84.89 3.43%± 0.34% 2.02%± 0.18%

TaS 271.05± 16.99 271.05± 16.87 5.22%± 0.62% 11.51%± 0.10% 271.05± 16.93 271.05± 17.11 4.67%± 0.33% 8.90%± 0.10%

Uniform Fair 410.72± 22.63 1383.06± 95.08 1.52%± 0.21% 0.41%± 0.12% 476.13± 32.11 3703.97± 354.92 2.58%± 0.24% 0.86%± 0.37%
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