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Introduction



» In general much harder to deal with compared to the i.i.d. case.
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The no . case

» In general much harder to deal with compared to the i.i.d. case.

» For Markovian models it is possible to say something sometimes.
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» In general much harder to deal with compared to the i.i.d. case.
» For Markovian models it is possible to say something sometimes.

> Extending results to partially observable models is extremely challenging [Fuh03] (and still
an open question in almost every case afaik).
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Change of Measure (recap)



Change of Measure: recap

Relate the probability of an event under a measure to another measure. Consider two measures
P,,P,. and an event £ € F;, where F; = o(X1,..., Xy):

P, (§) = E, [1¢]
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Change of Measure: recap

Relate the probability of an event under a measure to another measure. Consider two measures
P,,P,. and an event £ € F;, where F; = o(X1,..., Xy):

dP,/(X]_, s aXt)
P, (X1, X))

P, (£) = E,[le] = E, |1¢

=exp(—2Zt)
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Change of Measure: recap

Relate the probability of an event under a measure to another measure. Consider two measures
P,,P,. and an event £ € F;, where F; = o(X1,..., Xy):

dPI/’(X17"'aXt)
P, (£) = E, 1] = E, |1 _E,[1 ~7)].
(8) [ 5] E £ dPV(X17"~7Xt) [ 5exp( t)]

=exp(—2Zt)

We can derive the the inequalities from this relationship.

Change of Measure 4/48



Change of Measure: recap - 1st low-level form

P, () =E, [1gexp(—Z4)].

First low-level form.

P, () =E, [1gexp(—2Z)],
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Change of Measure: recap - 1st low-level form

P, () =E, [1gexp(—Z4)].
First low-level form.
P, () =E, [1gexp(—2Z)],
E,

[15 eXp(_Zt)1{74<;l:}] ’
> eia:]El/ [151{Z,<,’1:}:| )

Y
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Change of Measure: recap - 1st low-level form

P, () =E, [1gexp(—Z4)].

First low-level form.

P,/(£) =E, [1g exp(—Z)],

E, [1e exp(—Z¢)1iz,<a}] »
e°E, [Lel{z,<n)]
=e "P, (EN{Z; < x}).

Y

vV

Thus

First low-level form
PV ((‘: N {Zt < CE}) S e‘”Pl,/ (5)
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Change of Measure: recap - 2nd low-level form

P, () =E, [1gexp(—Z4)].

Second low-level form. From the first one we have

P, (E) > e *P, (EN{Z: < z}).
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Change of Measure: recap - 2nd low-level form

P, () =E, [1gexp(—Z4)].

Second low-level form. From the first one we have
P (&) 2 e P, (EN{Z: < x}).
Use the fact that max(0,P(4) + P(B) — 1) < P(AN B) < min(P(4),P(B)):

P, (£) > e [P, (£) + P, (Z, < z) — 1],
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Change of Measure: recap - 2nd low-level form

P, () =E, [1gexp(—Z4)].
Second low-level form. From the first one we have
P (&) 2 e P, (EN{Z: < x}).
Use the fact that max(0,P(4) + P(B) — 1) < P(AN B) < min(P(4),P(B)):

e P, (E)+ P, (Z; <) —1],
Thus

Second low-level form

P, (£) < P,(Z; > ) + *P, (£).

Change of measure - 2nd low-level form 6/48



Change of Measure: recap - high-level form

Start from the beginning

P, (£) =E, [1gexp(—Z;)] = E, [1cE, [exp(—Z1)|€]],

Change of measure - high-level form 7/48



Change of Measure: recap - high-level form

Start from the beginning
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Change of Measure: recap - high-level form

Start from the beginning

P, (£) =E, [1gexp(—Z;)] = E, [1cE, [exp(—Z1)|€]],
> E, [1g exp (—E.,[Z:|€])],
— exp (“EZJE] P, (1 = 1) +0 - B, (1 = 0)
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Change of Measure: recap - high-level form

Start from the beginning
P, (£) =E, [1gexp(—Z;)] = E, [1cE, [exp(—Z1)|€]],
> E, [1g exp (—E, [Z:|€])]
=exp (=E,[Z€]]P,(1e =1)+ 0 -P, (1 = 0),
= exp (—E,[Z:|E]) P, (E).
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Change of Measure: recap - high-level form

Start from the beginning
P, (£) =E, [1gexp(—Z;)] = E, [1cE, [exp(—Z1)|€]],

> E, [1g exp (—E, [Z:|€])]
=exp (=E,[Z€]]P,(1e =1)+ 0 -P, (1 = 0),

= exp (—E, [Z|€]) P, (€).

Repeat the same for £¢. Hence
v (£€)

B,8)
<
In B @) S E,[Z:|€] and In D

< E,[Z:]E°].
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Change of Measure: recap - high-level form

Start from the beginning
P, (£) =E, [1gexp(—Z;)] = E, [1cE, [exp(—Z1)|€]],
> E, [1g exp (=E, [Z:|€])],
= exXp (_]Eu[Zt‘gﬂ P,,(].g = 1) 0« ]PV(]-S = 0)7

= exp (—E,[Z:|E]) P, (E).

Repeat the same for £¢. Hence
b, (&) P, (&%)
<
In PV,(E) ~ ]E;/[Zf‘g] and In Py,(ge)
Conclude by lower bounding the terms in E, [L;] = E,[L;|E]P,(E) + E, [Li|E)P, (E°).

< E,[Z:|€9.

High level form

E,[Li] > KI(P, (), B,/ (€)) with K(z,y) = ¢ In(x/y) + (1 - &) In(1 — 2)/(1 — y))-
7/48
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Detecting a change in a stream
of data as quickly as possible



Quickest Change Detection

We now look at a different problem, called Quickest Change Detection.

» Suppose you observe a stream of random variables X7, Xo, X3....

» The conditional density function of X, is fo(Xn|X1,...,Xn-1) for n < v and
fl(Xn,th 000 ,Xn_1) fOI‘ n 2 V.

QCD - Problem definition 8/48



Quickest Change Detection

We now look at a different problem, called Quickest Change Detection.

» Suppose you observe a stream of random variables X7, Xo, X3....

» The conditional density function of X, is fo(Xn|X1,...,Xn-1) for n < v and
fl(Xn,th 000 ,Xn_1) fOI‘ n 2 V.

» v is an unknown change-time.

» Forv=1,2,... we let P, denote the probability measure of the sequence when v < oo, and
otherwise we denote it by Po.

QCD - Problem definition 8/48



Quickest Change Detection (cont.)

Hypothesis Testing Problem

Hy : nochange vs H;j: achange happened

» Ideally, we want an algorithm with a certain false alarm rate (type | error), i.e.,
1
Ex[r] > — with a > 0.
@

» Performance of a detection algorithm: worst average detection delay (WADD). Let 7 be
the stopping time of the algorithm (that tells you when to stop, i.e., a change was
detected), then

E(7) = sgp esssupE, [(T —v)*|Xy,..., X, 1]

v>1

» Minimum number of samples 7 needed to detect a change with a given false alarm rate?

QCD - Problem definition 9/48



Quickest Change Detection: lower bound

In the i.i.d. case the information rate! is

(T*)71

l/+n

= Jin 3w

1The characteristic time is T

Lower bound

— ([*)—1

KL(F, Fo).
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Quickest Change Detection: lower bound

In the i.i.d. case the information rate! is

l/+n
(T*)fl = = n]gréo ﬁ Zl FO Xt L(F1 Fo)

To generalize non the non-i.i.d. setting, we require the following assumption.
Assumption (Bound on hte information rate)

Let Z,, = In % We assume that 31* > 0 such that

v+t
lim supesssupP, (1;113)(2 Zp >I*(1+0)n | Xq,... ,Xl,_1> =0 Vo>0. (1)

n—oo v>1

That is, there exists some I* to which n=! ZugkgnJru Z}, converges to in probability.

IThe characteristic time is T* = (1*)~!

Lower bound 10/48



Quickest Change Detection: lower bound (cont.)

The idea is to show the following for any § € (0,1):

a—0

(P1) lim P, (’7’ —v<T*(1-9¢)In(l/a), i: Zy < (1—=6)In(1/a)| 1> l/> =0,

n=v

and

(Pz)oléig%)[?,, (7‘ —v <T*(1-90)In(1/w), Z Zn> (1 =6 In(1/a) | T > y) =0,

n=v

Lower bound 11/48



Quickest Change Detection: lower bound (cont.)

The idea is to show the following for any § € (0,1):

(P1) hm P, (’7’ —v<T*(1-9¢)In(l/a), Z Zy < (1—=6)In(1/a)| 1> y) =0,
a—0

and

(Pz)oléig%)[?,, (7‘ —v <T*(1-90)In(1/w), Z Zn> (1 =6 In(1/a) | T > y) =0,

n=v

which also implies that?
.. LB r—v|T >
lim inf >

1
o et LS U
a—0 In(1/«) I*

2This would conclude the proof since E(7) > E, [t — v|T > v].
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Quickest Change Detection: lower bound (cont.)

(P): P, <T —v < I*(1-6)In(1/a), Z Zn>(1—=6)In(1/a)| 7> y)

n=v

Let no, = T*(1 — ¢) In(1/a) with 6 € (0,1).
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Quickest Change Detection: lower bound (cont.)

(P): P, <T —v<I*(1-6)In(1/a), Z Zn>(1—=6)In(1/a)| 7> y)

n=v

Let no, = T*(1 — ¢)In(1/«) with 6 € (0,1). Then

(P2) <esssupP, (T —v<T*(1-0)In(1/a), I" XT: Zn>T"(1=0)1+0)In(1/a) | T > 1/)

n=v
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Quickest Change Detection: lower bound (cont.)

(P): P, <T —v<I*(1-6)In(1/a), Z Zn>(1—=6)In(1/a)| 7> y)

n=v

Let no, = T*(1 — ¢)In(1/«) with 6 € (0,1). Then

(P2) <esssupP, [7—v <T*(1—-90)In(1/ax), I" XT: Zn>T"(1=0)1+0)In(1/a) | T > 1/)

n=v

v+t
< esssup P, (igax 'y Z,>I'1-6)1+6)(1/a)| 7> y>

n=v
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Quickest Change Detection: lower bound (cont.)

. P, <T—V<I*1_ 6) In(1/c), Zan l52>111(1/(1)|T>V)

n=v

Let no, = T*(1 — ¢)In(1/«) with 6 € (0,1). Then

(P2) <esssupP, [7—v <T*(1—9)In(1/a), I*ZZ >I*(1—6)(1+6)1n(1/a)7'21/)

n=v

t<n

v+t

< esssupP, | max Zn>T"(1+0)ng | 72> y) — 0 as a — 0 by assumption.

t<ng

v+t
< esssupP, (max[* Z Zn>I"(1-0)14+6)In(l/a) | 7 > y)

n=v

Lower bound 12/48



Quickest Change Detection: lower bound (final)

To prove (P;) — 0 as o — 0 we can use similar arguments as in the i.i.d. case.
Lemma (Another low-level form of the fundamental inequality)
For all x € R;t € N and all event £ € F; we have

(Change of measure trick) P,(EN{Z; < z}) < P (E),

dP, (X1,...,X¢:)

where Z; = In T (KX

is the log-likelihood ratio.

Lower bound 13/48



Quickest Change Detection: lower bound (final)

To prove (P;) — 0 as o — 0 we can use similar arguments as in the i.i.d. case.
Lemma (Another low-level form of the fundamental inequality)
For all x € R;t € N and all event £ € F; we have

(Change of measure trick) P,(EN{Z; < z}) < P (E),

dP, (X1,...,X})

where Z; = In T (KX

is the log-likelihood ratio.

Let t =ny, and € = {7 —v < ny}. Then £ € F,_ . As in the i.i.d. case one can prove
Poo(&lr > v) < [In(1/a)]?a. Letting z = (1 — 62)In(1/)

(P) =P, (EN{Z,, <(1-8)In(1/a)}|T>v) < [111(1/04)]20462 —0asa—0.

Hence, the result is proven.

Lower bound 13/48



Example with an MDP

Information rate I(py, p2)

0.675

0.600
0.8 1

1—p1 1—p2 0525
p1 0.6 0450
a 0375 _
0ad 0.300
0225
P2 02 0.150

0.075

2 0.4 N 06 08 :
Example with a Markov chain with 2 states. fy has pg = p1 = 0.5. The quantity I3 is
I =E;.,[KL(Pi(s),P2(s))], where p is the stationary distribution under f;.

3As oo — 0 one can verify that the average log-likelihood ratio under P, tends to this quantity.

Lower bound 14/48



Best Policy Identification:
Tabular Markov Decision
Processes



Introduction

» Consider an MDP M = (S, A, P,r,7) *
> S is the state space (finite);
> A is the action space (finite)
> P:SxA— A(S) is the transition function.
» r:5xA—[0,1] is the reward function.
» ~ € (0,1) is the discount factor.

» A policy m: s — A(A) maps states to distributions over actions.
» The value of a policy is V™ (s) = Equn(|s)[@7 (5, a)], where

Q7 ( E”Zv “r(ss, at)|s0 = s, a0 = a).

t>1

> We assume there exists a unique optimal policy 7*(s) = argmax, V™ (s),Vs € S (which is
deterministic...).

4Setting studied in [AMP21, AMGP21]

15/48



Best Policy Identification with Fixed Confidence: introduction

Estimate 7* as quickly as possible with confidence § € (0,1).

BPI with Fixed Confidence - Problem definition 16/48
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Estimate 7* as quickly as possible with confidence § € (0,1).

» Assume the reward function to be deterministic and known.
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Best Policy Identification with Fixed Confidence: introduction

Estimate 7* as quickly as possible with confidence § € (0,1).

» Assume the reward function to be deterministic and known.
» As usual, define 7 to be the stopping time of the algorithm.
> Let 7, be the optimal arm estimated by the algorithm at the stopping time.

» We say that an algorithm is 5-PC (Probably Correct) if Pps(7 < 0o, 1, =7*) > 1 — 4§ for
all possible models M satisfying the uniqueness of the best arm.

BPI with Fixed Confidence - Problem definition 16/48



Best Policy Identification with Fixed Confidence: lower bound

The 0-PC event is {7, # ©*}. We define the set of confusing models according to this event!

Lower bound 17/48



Best Policy Identification with Fixed Confidence: lower bound

The §-PC event is {71, # 7*}. We define the set of confusing models according to this event!

A(M) == {M' : 7*(M") # n*(M), M’ has a unique optimal policy},

where (M) is the optimal policy in M’ (sim. 7*(M)).
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Best Policy Identification with Fixed Confidence: lower bound

The 0-PC event is {7, # ©*}. We define the set of confusing models according to this event!

A(M) == {M' : 7*(M") # n*(M), M’ has a unique optimal policy},

where (M) is the optimal policy in M’ (sim. 7*(M)).

Why we define the set according to the 6-PC event? Because we want to check if at the
stopping time the true MDP M is confusing for the MDP M. that we estimated.

Lower bound 17/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

. AT . _ dPar(S1,A1,R1,57,...,8¢,A¢, R, Sy)
Consider then the log-likelihood ratio Z; = In Py (St AL RS S A RS between M and

M’ € Alt(M)®. Then:

P(Spls,a)
EnlZ) = By |3 Y 1s,cunmey I P'(S,s,a)

n=1 s,a

5We indicate by S/, the state observed after taking action A, in state S,

Lower bound 18/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

d]PM(ShAth,Sp ,St,A¢,Ri,S;)
Py (St AL RS S A RS between M and

Consider then the log-likelihood ratio Z; = In
M’ € Alt(M)®. Then:

P(S,]s,a)
Em[Z: ] =Eym Zzl{sn 5,An=a} In P(S[s,a) |

n=1 s,a

Let Z-(s,a) = > 71 1(s,=s An=a} ln% and N;(s,a) be the time number of times

(s,a) has been selected up to time ¢. Then

N-(s,a)

P(Y,|s,a -
Enr [Z ( )] Enr Z In P/ | )) =Eum [Z 1{N,(s,a)2n}Wn‘| .
—,_/

n=1 n=1
W,

5We indicate by S/, the state observed after taking action A, in state Sy,

Lower bound 18/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

E]u [Z.,-(S7 a)} = E[w

Z 1{NT(Saa)Zn}Wn‘| .

n=1
Note that the event {N.(s,a) > n} = {N,(s,a) <n —1}° € F,_; (the filtration of the data
up to and including round n — 1). Since W, is independent of F,,_1, then we have

Lower bound 19/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

E]u [Z.,-(S7 a)} = E[w

Z 1{NT(Saa)Zn}Wn‘| .

n=1
Note that the event {N.(s,a) > n} = {N,(s,a) <n —1}° € F,_; (the filtration of the data
up to and including round n — 1). Since W, is independent of F,,_1, then we have

Z l{NT(s,a)Zn}

n=1

Eu[Z-(s,0)] = En KL(P(s,a), P'(s,0)),

Lower bound 19/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

E]u [Z.,-(S7 a)} = E[w

Z 1{NT(Saa)Zn}Wn‘| .

n=1

Note that the event {N.(s,a) > n} = {N,(s,a) <n —1}° € F,_; (the filtration of the data
up to and including round n — 1). Since W, is independent of F,,_1, then we have

Z l{NT(s,a)Zn}

n=1

— ZPM ) > n)KL(P(s,a), P'(s,a)),

Eu[Z-(s,0)] = En KL(P(s,a), P'(s,0)),
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Best Policy Identification with Fixed Confidence: lower bound (cont.)

E]u [Z.,-(S7 a)} = E[w

Z 1{NT(Saa)Zn}Wn‘| .

n=1

Note that the event {N.(s,a) > n} = {N,(s,a) <n —1}° € F,_; (the filtration of the data
up to and including round n — 1). Since W, is independent of F,,_1, then we have

D 1w, (sa)zn)

n=1

— ZPM ) > n)KL(P(s,a), P'(s,a)),

Eu[Z-(s,0)] = En KL(P(s,a), P'(s,0)),

= Ep [N, (s,a)[KL(P(s,a), P'(s,a)),

Lower bound 19/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

En|Z Z]EM a)[KL(P(s,a), P'(s,a)).

Lemma (Fundamental inequality [GMS19])
For any F.-measurable r.v. Y € [0, 1] we have Epy, [Z- (M, My)] > K1 (Epr, [Y], Eng, [Y]) -

We apply it and choose YV = 1¢,& = {7, = 7*(M)}:

Lower bound 20/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

Em(Z Z]EM a)][KL(P(s,a), P'(s, a)).
Lemma (Fundamental inequality [GMS19])
For any F.-measurable r.v. Y € [0, 1] we have Epy, [Z- (M, My)] > K1 (Epr, [Y], Eng, [Y]) -
We apply it and choose YV = 1¢,& = {7, = 7*(M)}:

Em[Z:] =Y Em[N:(s,a)]KL(P(s,a), P'(s,a)) > k(1 —§,0).

S,a

since Pps(E) > 1 — 0 and Py (€) < 6 from the fact that £ C {7, # 7*(M')} under Pyy.

Lower bound 20/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

We can take the infimum over the set of confusing models:

i / ! > = ,
M/é/{‘ﬁ(m SZ;EM[NT(& a)|KL(P(s,a), P'(s,a)) > kI(1 - 6,0),

which yields the most confusing model.

Lower bound 21/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

We can take the infimum over the set of confusing models:

i / ! > = ,
M/EIEIE(M) ;:EM[NT(& a)|KL(P(s,a), P'(s,a)) > kI(1 - 6,0),

which yields the most confusing model.

Divide and multiply the left hand-side by Ej[7] and let w; o == Ep[N-(s,a)]/En[7]:

/ i s oK ,a),P'(s,a)) > KkI(1 —6,0).
EM[T]M,gglft(M);w, L(P(s,a), P'(s,a)) > kI( )

Lower bound 21/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

We can take the infimum over the set of confusing models:
i / ! > - ,
M/EIEIE(M) ;:EM[NT(& a)|KL(P(s,a), P'(s,a)) > kI(1 - 6,0),

which yields the most confusing model.

Divide and multiply the left hand-side by Ej[7] and let w; o == Ep[N-(s,a)]/En[7]:

,, i K ! > kl(1 —0,0).
Ear[7] Af’elillft(M)gZaws’a L(P(s,a), P'(s,a)) > kl(1 — 4, 4)
Therefore, we conclude by optimizing over wg , € A(S x A) (the simplex states and actions):
Ep[r]  sup inf Zws KL(P(s,a), P'(s,a)) > kl(1 - 6,6).

wEA(SXA) M’ eAlt(M)

Lower bound 21/48



Best Policy Identification with Fixed Confidence: lower bound (final)

sup wSaKL P/ s,a
wGA(SxA)M/EAlt(M)Z ,a), P'(s, a))

is that it?

Lower bound »
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su wSaKL P/ s,a
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is that it? We are missing the navigation constraints! (forward model).
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su wSaKL P/ s,a
wGA(SPxA)M/EAlt(M)Z ,a), P'(s, a))

is that it? We are missing the navigation constraints! (forward model).

For ergodic models, as 6 — 0, we have that w tends to the stationary distribution over states
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Best Policy Identification with Fixed Confidence: lower bound (final)

su wSaKL P/ s,a
wGA(SPxA)M/EAlt(M)Z ,a), P'(s, a))

is that it? We are missing the navigation constraints! (forward model).
For ergodic models, as 6 — 0, we have that w tends to the stationary distribution over states

and actions.Hence we can take the limit and find that ©

E
lim inf 7] > T,
5—0 1In(1/6)

where

T* —1 = f 5 aKL .Pl ,
T webslll(M M/elzrxllt M) Zw ,a), P'(s,a))

with Q(M) ={w € A(S X A) : 3, ws.a = >y o P(8]8",a")wsr o'} (Kolmogorov equations).

SFind a non-asymptotic approach in the appendix.

Lower bound 22/48



Set of confusing model is non-conv

ay : (r1,p1) (0,1)
ar :(ri,1—p1)

az : (r2,p2)

» Consider the MDP in figure, where the starting state is s;. In each edge we indicate the
action and the corresponding reward and transition probability (no action = all actions).
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Set of confusing model is non-convex!

ai : (r1,p1) (0,1)
ay: (r1,1 —p1)

az : (r2,p2)

» Consider the MDP in figure, where the starting state is s;. In each edge we indicate the
action and the corresponding reward and transition probability (no action = all actions).

» The optimal Q-values in s are

Q*(s1,a1) = r1 +yp1V*(s1) and Q*(s1, a2) = p2(r2 + vV *(s1)).

Therefore

1 par2
V*(s1) = max ( , )
(s1) 1=9p1 1—1p2

Non-Convexity 23/48



Set of confusing model is non-convex!

ay : (r1,p1) (0,1)
a1 : (0,1 —p1)

az : (r2,p2)

1. ¢1: fix 1 = 0.7,p1 = 0.9,72 = 0.3, p2 = 1 then a; is optimal and Q*(s1,a1) ~ 3.68.
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az : (r2,p2)

1. ¢1: fix 1 = 0.7,p1 = 0.9,72 = 0.3, p2 = 1 then a; is optimal and Q*(s1,a1) ~ 3.68.
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Set of confusing model is non-convex!

ay : (r1,p1) (0,1)
a1 : (0,1 —p1)

az : (r2,p2)

1. ¢1: fix 1 = 0.7,p1 = 0.9,72 = 0.3, p2 = 1 then a; is optimal and Q*(s1,a1) ~ 3.68.

2. ¢o: fixry =0.7,p1 = 0.1, = 0.3, p2 = 0.77 then a; is optimal and Q*(s1,a1) ~ 0.77.

3. @avg: take the average between these two models. Then p; = 0.5,p2 = 0.885. ay is
optimal and Q*(s1,a2) =~ 1.30

If the first two models ¢1, ¢o belong to Alt, then their average ¢4,y does not!

Non-Convexity 24/48



Set of confusing model is non-convex!

Regarding the non-convexity:

> If you check the original example from [AMP21] it is incorrect.
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Regarding the non-convexity:

> If you check the original example from [AMP21] it is incorrect.

» We used the same reward in ¢1, ¢o because we assumed to know the reward function!.
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sing model is non-con

Regarding the non-convexity:

> If you check the original example from [AMP21] it is incorrect.
» We used the same reward in ¢1, ¢o because we assumed to know the reward function!.

» Non-convexity seems to arise due to the probability values appearing both at the

numerator and denominator V*(s;) = max (1 , parz )
vp1’ 1=7p2
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Set of confusing model is non-conv

Regarding the non-convexity:

> If you check the original example from [AMP21] it is incorrect.
» We used the same reward in ¢1, ¢o because we assumed to know the reward function!.

» Non-convexity seems to arise due to the probability values appearing both at the

numerator and denominator V*(s;) = max (1 , parz )
vp1’ 1=7p2

» However, in simple MDPs with known rewards, where (I — WP”*)_1 has a nice structure,
maybe it is possible to have convexity...
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Set of confusing model is non-con

Regarding the non-convexity:

>
>
>

If you check the original example from [AMP21] it is incorrect.
We used the same reward in ¢1, ¢o because we assumed to know the reward function!.
Non-convexity seems to arise due to the probability values appearing both at the

1 p2T2 )
1—vyp1’ 1—vp2 /J*

numerator and denominator V*(s1) = max(
However, in simple MDPs with known rewards, where (I — WP”*)_1 has a nice structure,
maybe it is possible to have convexity...

We have similar comments if we know the transition function but not the rewards
distributions.

Non-Convexity 25/48



Can we convexify the lower bound?

Convexification

Can we convexify the lower bound?
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Can we convexify the lower bound?

We know that

lim inf Epr] > T*.
5—0 ln(l/é)
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Can we convexify the lower bound?

Convexification

Can we convexify the lower bound?

We know that

lim inf Epr] > T*.
5—0 ln(l/é)

Define T (w) = inf prr e are(ar) Es,a)nw [KL(P(s, a), P'(s,a))].
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Can we convexify the lower bound?

Convexification

Can we convexify the lower bound?

We know that

lim inf Epr] > T*.
5—0 ln(l/é)

Define T (w) = inf prr e are(ar) Es,a)nw [KL(P(s, a), P'(s,a))].

Convexification

Can we find U(w) s.t. for every w we have that U is convex in w and T'(w) < U(w) ?

Convexification 26/48



T*l — f E NU_]KLP 7‘,P/t_ ]
@) M'elzrxllt(M) (s,0)~w [KL(P(s,a), P'(s,a))]

We want to find U(w) s.t. T(w) < U(w).

1. Is it possible to lower bound the sum of KL divergences so that the constraint is always
satisfied?
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T*l — f E NWKLP , ,P/t_ ]
@) M'elzrxllt(M) (s,0)~w [KL(P(s,a), P'(s,a))]

We want to find U(w) s.t. T(w) < U(w).

1. Is it possible to lower bound the sum of KL divergences so that the constraint is always
satisfied?

2. Then, can we rewrite the constraints in a way that is related to the KL terms?
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T*l — f E NWI{LP , ,P/k_ ]
) M'elzrxllt(M) (s,0)~w [KL(P(s,a), P'(s, a))]

We want to find U(w) s.t. T(w) < U(w).

1. Is it possible to lower bound the sum of KL divergences so that the constraint is always
satisfied?

2. Then, can we rewrite the constraints in a way that is related to the KL terms?

3. We know that the KL is roughly variance over gaps squared — try to write the constraints
in terms of the sub-optimality gaps? 7.

"The sub-optimality gap is defined as A(s,a) = V*(s) — Q*(s, a).

Convexification 27/48



Rewriting the set of confusing models [1/2]

Lemma
We have that

AW6(M) = Uy qopre (5)Albs o (M) where Alty o(M) = {M': Q5 (s,a) > Vi (s)}.
where m* is the optimal policy in M and V]C[*, is the evaluation of ™ in M.

We begin by proving that Alt(M) C Us gz (s)Alts o (M) (which is more important, why?).
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Lemma
We have that

AW6(M) = Uy qopre (5)Albs o (M) where Alty o(M) = {M': Q5 (s,a) > Vi (s)}.
where m* is the optimal policy in M and V]C[*, is the evaluation of ™ in M.

We begin by proving that Alt(M) C Us gz (s)Alts o (M) (which is more important, why?).
» By contradiction, assume 3M’ € Alt(M) s.t. Vs,a # 7*(s) we have M’ ¢ Alt, ,(M).
> Therefore Q7 (s,a) < Vi (s) for every s,a # 7*(s).

» Moreover Q7 (s, 7*(s)) = Vi (s) for every s.
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Rewriting the set of confusing models [1/2]

Lemma
We have that

AW6(M) = Uy qopre (5)Albs o (M) where Alty o(M) = {M': Q5 (s,a) > Vi (s)}.
where m* is the optimal policy in M and V]C[*, is the evaluation of ™ in M.

We begin by proving that Alt(M) C Us gz (s)Alts o (M) (which is more important, why?).

By contradiction, assume 3M’ € Alt(M) s.t. Vs,a # 7*(s) we have M’ ¢ Alt, ,(M).
Therefore Q7 (s,a) < V{7, (s) for every s,a # 7*(s).
Moreover Q7 (s, 7 (s)) = V{i,(s) for every s.

Hence Q7 (s,a) < Vi (s) for every (s, a).
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Rewriting the set of confusing models [1/2]

Lemma
We have that

AW6(M) = Uy qopre (5)Albs o (M) where Alty o(M) = {M': Q5 (s,a) > Vi (s)}.
where m* is the optimal policy in M and V]C[*, is the evaluation of ™ in M.

We begin by proving that Alt(M) C Us gz (s)Alts o (M) (which is more important, why?).

» By contradiction, assume 3M’ € Alt(M) s.t. Vs,a # 7*(s) we have M’ ¢ Alt, ,(M).
> Therefore Q7 (s,a) < Vi (s) for every s,a # 7*(s).

» Moreover Q7 (s, 7*(s)) = Vi (s) for every s.

> Hence Q7 (s,a) < Vi, (s) for every (s,a).

>

By the policy improvement theorem there does not exists any action that improves the
policy, hence 7* is optimal in M’ = contradiction!
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Rewriting the set of confusing models [2/2]

Lemma
We have that

AW6(M) = Uy qopre (5)Albs o (M) where Alt, o(M) = {M': Q5 (s,a) > Vi (s)}.
where m* is the optimal policy in M and V]C[*, is the evaluation of ™ in M.

We now prove Alt(M) D U, qrs (5)Alts,a (M).
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We have that

AW6(M) = Uy qopre (5)Albs o (M) where Alt, o(M) = {M': Q5 (s,a) > Vi (s)}.
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st.M' ¢ Alt(M).
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Rewriting the set of confusing models [2/2]

Lemma
We have that

AW6(M) = Uy qopre (5)Albs o (M) where Alt, o(M) = {M': Q5 (s,a) > Vi (s)}.
where m* is the optimal policy in M and V]C[*, is the evaluation of ™ in M’.

We now prove Alt(M) D U, qrs (5)Alts,a (M).

» Consider a generic pair sg,ag # 7*(so). By contradiction, assume 3M’ € Altg, o, (M)
st.M' ¢ Alt(M).
» Define the policy

71'/(5) _ {(1,0 S = S,

7*(s) otherwise.
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Rewriting the set of confusing models [2/2]

Lemma
We have that

AW6(M) = Uy qopre (5)Albs o (M) where Alt, o(M) = {M': Q5 (s,a) > Vi (s)}.
where m* is the optimal policy in M and V]C[*, is the evaluation of ™ in M’.

We now prove Alt(M) D U, qrs (5)Alts,a (M).

» Consider a generic pair sg,ag # 7*(so). By contradiction, assume 3M’ € Altg, o, (M)
st.M' ¢ Alt(M).
» Define the policy

7*(s) otherwise.

71'/(5) _ {(1,0 S = S,

> Then, we have that Q7 (so, 7 (s0)) > ViT.(s0). However, if M’ ¢ Alt(M), then 7* is
optimal in M’, which is not possible again by the policy improvement theorem.

Convexification 29/48



Relating the sub-optimality gaps to the KL terms

Using this decomposition we get

=4 = inf E ~wlKL(P(s,a), P'(s, :
(w) wr B 1 B [KL(P(s,a), P'(s,a))]

= mi inf  E(yuou[KL(P(s,a), P'(s,a))],
LT N T w[KL(P(s,a), P'(s,a))]
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Relating the sub-optimality gaps to the KL terms

Using this decomposition we get
T 1 — inf E NWKLPw‘,Pll, :
(w) wr B 1 B [KL(P(s,a), P'(s,a))]

= mi inf  E(yuou[KL(P(s,a), P'(s,a))],
LT N T w[KL(P(s,a), P'(s,a))]

i inf _a)KL(P(s,a), P'(s,
s,aryréljrr*l(s) ]\/I’eAllItl,Sﬁa(]\fI)W(s a) ( (S a) (S a))

+ ) wer mr (o KL(P(s', 7 (s"), P' (', 7(5))),
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Relating the sub-optimality gaps to the KL terms

Using this decomposition we get
T 1 — inf E NWKLPw‘,Pll, :
(w) wr B 1 B [KL(P(s,a), P'(s,a))]

= mi inf  E(yuou[KL(P(s,a), P'(s,a))],
LT N T w[KL(P(s,a), P'(s,a))]

i inf _a)KL(P(s,a), P'(s,
s,aryréljrr*l(s) ]\/I’eAllItl,Sﬁa(]\fI)W(s a) ( (S a) (S a))

+ ) wer mr (o KL(P(s', 7 (s"), P' (', 7(5))),
= s,ar;élil*l(s) A,ffeAilrtlfa(M)w(S’a)KL(P(S" a), P/(S’ a))

+ (H;i,nws’,ﬂ*(s’))Hl;,lXKL(P(Slvﬂ*(S/%P/(S/aW*(S/»)v

where we used the fact that the constraints only involve the pairs {(s,a), (s',7*(s’))s }.
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Relating the sub-optimality gaps to the KL terms

So we have that

AW6(M) = Uy qopre(5)Alts o (M) where Alty o (M) = {M': Q7% (s,a) > Vi (s)}.

How can we relate the KL terms to this constraint and to A(s,a)?
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Relating the sub-optimality gaps to the KL terms

So we have that

AW6(M) = Uy qopre(5)Alts o (M) where Alty o (M) = {M': Q7% (s,a) > Vi (s)}.

How can we relate the KL terms to this constraint and to A(s,a)? We know that
Ao+ Q*(s,a) = V*(s). Then combine the inequality with this equality to get

A(5,0) < V*(s) = Vi (5) + QB (5,0) — Q*(5,0) £ By [V (5]
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Relating the sub-optimality gaps to the KL terms

So we have that

AW6(M) = Uy qopre(5)Alts o (M) where Alty o (M) = {M': Q7% (s,a) > Vi (s)}.

How can we relate the KL terms to this constraint and to A(s,a)? We know that
Ao+ Q*(s,a) = V*(s). Then combine the inequality with this equality to get

A(Sa CL) <Vr (S) - V]C; (S) + QK;’(Sa a) - Q* (37 CL) + ES’NP/(SJI) [V*(sl)]
from which follows that (we write in vector form)

A(s,a) < AV(s) +yP'(s,a)T AV + AP(s,a)  V*,
< (YP'(s,a) — 1) TAV + AP(s,a) " V*.

where AV = Vi, — V* AP(s,a) = P'(s,a) — P(s,a), which are all vectors of size |S]|.
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Relating the sub-optimality gaps to the KL terms

A(s,a) < (yP'(s,a) — 1,)TAV + AP(s,a) ' V*.

We upper bound AV using

|AV(8)| = Y Egmpr(s,me () Vi (8)] = Egrop(s,me (s [V ()],
<A(|P'(s,7*(s)) AV |+ |AP(s,7*(s)) TV*]),
<Y(IAV |0 + |AP(s,7*(5)) TV*]).
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Relating the sub-optimality gaps to the KL terms

A(s,a) < (yP'(s,a) — 1,)TAV + AP(s,a) ' V*.

We upper bound AV using

|AV(8)| = Y Egmpr(s,me () Vi (8)] = Egrop(s,me (s [V ()],
<A(|P'(s,7*(s)) AV |+ |AP(s,7*(s)) TV*]),
<Y(IAV |0 + |AP(s,7*(5)) TV*]).

Therefore [|AV||o, < %W and

YAP(s, 7 (5)) TV*|

A(s,a) < T

+ AP(s,a)"V*.

We have rewritten the inequality in terms of the inner product APTV*. Can we upper bound
this using the KL between P and P’?
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Relating the sub-optimality gaps to the KL terms

Y|AP(s, m*(s)) TV*|
1—x

A(s,a) < + AP(s,a)TV*.

Can we upper bound the inner product using the KL between P and P’? Define the following
quantities

> Variance of V™ in (s,a): Varso(V™) == Eyp(s,a) [(VT(5') = Esrp(s,a) [V (s")])?].
> Maximum deviation of V™ in (s,a): MDg o(V™) = ||[V™(s") = Egrap(s,0) [V (s")]| .-
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Relating the sub-optimality gaps to the KL terms

Lemma

Let (s,a) € S x A. For any policy m we have that

(VYT AP(s,a)| < 4KL(P(s,a), P'(s, a)) [2Vars,a(v7f)

+\/2KL(P(s,a), P'(s, a))MDS,a(V”)ﬂ.

where V™ e RISl is the vector of values of the policy = and

T
AP(s,a) = [P’(sl\s,a) — P(s1]s,a) ... P'(sig/ls,a) — P(5|S||S,a)]

Let ™ = Egnp(js,a)[V"(s')] and note that (V™) TAP(s,a) = (V™ — u™) TAP(s,a).
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Relating the sub-optimality gaps to the KL terms

Lemma

Let (s,a) € S x A. For any policy m we have that

(VYT AP(s,a)| < 4KL(P(s,a), P'(s, a)) [2Vars,a(v7f)

+ \/2KL(P(s,a), P'(s, a))MDS,a(V”)ﬂ.
where V™ e RISl is the vector of values of the policy = and

T
AP(s,a) = [P’(sl\s,a) — P(s1]s,a) ... P'(sig/ls,a) — P(5|S||S,a)] .

Let ™ = Egnp(js,a)[V"(s')] and note that (V™) TAP(s,a) = (V™ — u™) TAP(s,a).

(V™ — ™) TAP(s,a)| < ‘[(\/P’(s,a) — /P(s,a)) o (\/P'(s,a) + \/P(s,0) — ™)

\ngnbghguﬁ is element-wise, and similarly o is the element-wise product. s/



Relating the sub-optimality gaps to the KL terms

(V™) TAP(s,a)|? < ' \/P’sa \/P(sa \/P’sa —i-\/Psa M))27
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Relating the sub-optimality gaps to the KL terms

(V™) TAP(s,a)|? < ' \/P’sa \/P(sa \/P’sa —i-\/Psa )
:'\/P’sa—\/Psa \/P’sa+\/Psa M))]rv
\/P’sa \/Pea H\/P’sa —|—\/Psa H))]Hv
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Relating the sub-optimality gaps to the KL terms

(V™) TAP(s,a)|? < ' \/P’sa \/P(sa \/P’sa —i-\/Psa )
:'\/P’sa—\/Psa \/P’sa+\/P8a M))]’27
\/P’sa \/Pea H\/P’sa—i—\/Psa M))]Hv

(b)

< 4H?(P(s,a), P'(s,a)) [|P'(s,a) + P(s,a)| T (V™ — u")**)] ,
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Relating the sub-optimality gaps to the KL terms

(V)TAP(s, ) < |[(\/P/(s,0) = \/P(s,0)) o (\/P'(s,0) + /P(s,))]T (V" = ™)),
:'\/P’sa—\/Psa [(\/P(s,a) + 1/ P(s,a)) 0 u))]’27
2| /PGa) - VP a) H\/P’sa+\/Psa "],

(? LH(P(s,a), P'(5,0)) [|P'(s,0) + P(s, )| (V™ — y")2)]

(é) AKL(P(s,a), P'(s,a)) [[P'(s,a) + 2P(s,a) — P(s,a)| (V™ — u™)*?)]

Convexification 35/48



Relating the sub-optimality gaps to the KL terms

(V™) TAP(s,a)|? < ' \/P’sa \/P(sa \/P’sa —i-\/Psa )
:'\/P’sa—\/Psa \/P’sa+\/P8a M))]fv
\/P’sa \/Pea H \/P’sa —|—\/Psa M))]sz

(i) 4H?(P(s,a), P'(s,a)) [|P'(s,a) + P(s,a)| " (V™ = u™)??)],

< UKL(P(s,a), P'(s,a)) [|P'(s. ) + 2P(s,a) — P(s,a)|T (V™ — u")2)]
< 4KL(P(s,a),P’( a)) [QVars <V + HP( s,a) — P(s,a)|[[1MDg (V™ )2] ,
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Relating the sub-optimality gaps to the KL terms

(V™) TAP(s,a)|? < ' \/P’sa \/P(sa \/P’sa —i-\/Psa )
:'\/P/Sa—\/Psa \/P/SG+\/PSG M))]’27
2 |VPEa - VPea) H (\/P'(s,a) +\/Psa u))]H?

(i) 4H?(P(s,a), P'(s,a)) [|P'(s,a) + P(s,a)| " (V™ = u™)??)],

(S) AKL(P(s,a), P'(s,a)) [\P'(s, a) +2P(s,a) — P(s,a)|" (V™ — ,u”)OQ)] ,
< 4KL(P(s,a), P'(s,a)) [QVars,a(V’T) + ||P'(s,a) — P(s, a)||1MDS,a(V’T)2] ,
< 4KL(P(s,a), P'(s, a)) [2vars,a(v7f) + \/2KL(P(s, a), P'(s, a))MDsya(V”)Q} .

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger's distance (add a factor 2) and used

(a+b)? <2(a® +1?); (0) H(P,Q) < yKL(P.Q).
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Relating the sub-optimality gaps to the KL terms

YNAP(s, 7 (s)) V¥

A(s,a) < T

+ AP(s,a)TV*.

We also want to relate each term on the r.h.s. to a fraction of A(s,a) to be able to bound the
individual KL terms using the gaps.
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Relating the sub-optimality gaps to the KL terms

YNAP(s, 7 (s)) V¥

A(s,a) < T

+ AP(s,a)TV*.

We also want to relate each term on the r.h.s. to a fraction of A(s,a) to be able to bound the
individual KL terms using the gaps.

Introduce a1, > 0 s.t. ay + s > 1 and let

s, m(s))TV*
o5 = TAZOTENTV o

asA(s,a) = AP(s,a)V*. (3)
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Relating the sub-optimality gaps to the KL terms

Using the lemma, for asA(s, a) we find

(2A(s,a))? < 4KL(P(s,a), P'(s,a)) 2\/&1~37a(1/7f)+\/2I<L(P(s7a),P'(s,a))MDS,a(V”)2 .
N————

=|AP(s,a)TV*|2
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Use a + b < 2max(a,b). Then

(a2A(s,a))? / (a2A(s,a))*/? /
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Relating the sub-optimality gaps to the KL terms

Using the lemma, for asA(s, a) we find

(2A(s,a))? < 4KL(P(s,a), P'(s,a)) 2\/&1~37a(1/7f)+\/2I<L(P(s7a),P'(s,a))MDS,a(V’T)2 .
N————

=|AP(s,a)TV*|2

Use a + b < 2max(a,b). Then

(a2A(s,a))? / (a2A(s,a))*/? /
W < KL(P(S’G)>P (s,a)) or 27/31\/“:)8’(1(‘/”)4/3 < KL(P(S,G,),P (S,a)).

Hence

. asA(s,a))? asA(s, a))¥/3 /
min <1(6\2/ari,a(&)ﬂ)" 2753&])(57&(‘);)4/3) < KL(P(s,a), P'(s,a)).
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Relating the sub-optimality gaps to the KL terms

YAP(s,m*(s)) "V

Similarly, for a1 A(s,a) = SE— S we get
. (alA’m,in(l - ’7))2 (alAmin(l - 7))4/3 /
< KL(P(s,7*(s)), P *(s))).
1oayy) (16 max, Vars,ﬂ*(s)(V”)’ 27/3 max, N{Dsm*(s)(vw)él/?, > max (P(s,7*(s)), P'(s,7"(s)))

where Apip = ming g7 (5) A(S, a).
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Relating the sub-optimality gaps to the KL terms

16Var, (V™) 27/3MD; ,(V™)4/3

s (01 Amin(1=7))? (a1 Bmin(1—7))*/3
By ((11) = Imin <16 max;s Varg q+(s) (V™) 27/3 max, MD x5y (V™)4/3 )~

Let By(s,a, a) = min ( (028(s,0))® (22A(s,0)*/% ) and

Applying what we have learnt we get

T~ '(w)> min inf w(s,a)KL(P(s,a), P'(s,a))

s,a#m*(s) M'€Alts o (M)
+ (Minwy r+(s1y) max KL(P(s', 7 (s"), P'(s', (")),

> i inf ,a)B i ' ax(s))B .
2, o B, 410 @ Bole,8,02) + (minisy e (00) Brlen)
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Relating the sub-optimality gaps to the KL terms

. azA(s,a))? azA(s,a))?/3
Let 32(87 a, 042) = min (1%\?“‘%(,”’(‘)/&)7 27/(31\2/[]3(5.;()\3”)4/3) and

— mi (1A min(1=7)) (@1 Amin (1=7))*/®
By ((11) = 1ng <16 max;s Varg q+(s) (V™) 27/3 max, MD x5y (V™)4/3 )~

Applying what we have learnt we get

T~ '(w)> min inf w(s,a)KL(P(s,a), P'(s,a))

s,a#m*(s) M'€Alts o (M)
+ (Minwy r+(s1y) max KL(P(s', 7 (s"), P'(s', (")),

> i inf B i ' ax(s))B .
2, o B, 410 @ Bole,8,02) + (minisy e (00) Brlen)

Note that for any « satisfying > . a; > 1 we also have that «;/ ) . «; satisfies the previous KL
inequalities.
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Relating the sub-optimality gaps to the KL terms

. . 4/3
For a; in the simplex, we also have af < O‘i/ . Thus

T '(w)> min inf w(s,a)a’Bs(s,a) + o (minwy «(s1)Bi.
s,a#m*(s) i EA(2) s’ ’
o A(s,a)? A(s,a)*/3
where Bs(s,a) = min (16\/“5’0(‘”), STTAND o (V)37 and
_ g (Amin(l_"/))z (Amin(l_'Y))zl/B
By = min <16maxS Var, rx(s) (V™) ? 27/3 maxs MD; (5 (V™)4/3 |-
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Relating the sub-optimality gaps to the KL terms

. . 4/3
For a; in the simplex, we also have af < O‘i/ . Thus

T '(w)> min inf w(s,a)a’Bs(s,a) + o (minwy «(s1)Bi.
s,a#m*(s) i EA(2) s’ ’
— mi A(s,a)? A(s,a)?/®
where Bs(s,a) = min (16\,“51&(‘”), 27/3MD, , (V)73 and
_ g (Amin(l_'\f))z (A7rlin,(1_7))4/3 N 2
By = min <16maxs Var, (o) (V") * 2773 max, MD, x (o) (V7)2/3 .Optimizing over « yields

=il
1 1
T Nw > min + — .
() s,a;é'rr*(s)(w(S,CL)BQ(S,a) ming wlgfm*(s/))Bl)
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Relating the sub-optimality gaps to the KL terms (final)

-1
1 1
T Yw) > i )
(W) o s,ar;;l}rr*l(s) <W($,(Z)BQ(S, CL) + ming wslﬂ*(s/>Bl>
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Relating the sub-optimality gaps to the KL terms (final)

-1
1 1
T Yw) > i )
(W) s,ar;;l}rr*l(s) <(.U($, a,)Bg (S, CL) + ming wsl}ﬂ-*(s/>31 )

H H*
T < S,a —. U )
(W) = s,a,I;liz((s) w(s,a)A(s,a)? i ()

mings wsl,ﬂ*(sl)

Then

with

™ 7/3 m\4/3
H, . — max 16Var, ,(V )7 2 NIDS’G(Vr ) 7
' A(s,a)? A(s,a)?/3

(1—7)%A7 ’

. 16 max Varg -5 (V™) 27/3 max, MDy 7+ (s) (Vm)4/3
H* = max . : 173
min ((Amin(1 —7))

Convexification

41/48



Conclusions

IEls @ H*

T < = U(w).
(W) = s,aI;liz((s) w(s,a)A(s,a)?  ming we (o )
with
1 (VT 27/31\“:)8 VT 4/3
H, , = max BVar, . (V ), (V") ,
’ A(s,a)? A(s,a)?/3
16 max, Var, (5 (V™) 27/3 max, MD, v (5 (V)3
H* = max 5 2“ , ’ ()43
(1—7)2A%,;, (Amin(1 = 7))

» If we plug in a uniform distribution w(s,a) = 1/(|S||A|) the bound scales roughly as
0 (M) The factor on + be improved to 1/(1 —v)3 (see [AMP21]).

A7 (1=7)*
» Many open questions:
» Possible to find a tighter bound? Simpler proof?
» Possible to characterize the gap U(w) — T'(w)?
» Are there some cases where the set of confusing models is convex, and we can compute T

exactly? e

Conclusions



Best Policy Identification: Linear
Markov Decision Processes




Introduction

Consider a linear MDP M = (S, A, P,r,~) s.t. to each pair (s,a) is associated a feature vector
#(s,a) € R?, satisfying ||¢(s,a)|| <1 8.

> S is the state space (finite);

» A is the action space (finite)

> P(s'|s,a) = ¢(s,a) " u(s') and r(s,a) = ¢(s,a) "0 for some p: S — R? and 6 € R%.

» ~ € (0,1) is the discount factor.

8Setting studied in [TJP23]
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The steps are (almost) the same as before. In [TJP23] they find that

3w KL(P(s, ), P'(5,0)) = (1= 7)> Y waald (00" +3(u— u) V) P,

=1 =?0 =" +~v(u— 1) Vi)

where we are considering an alternative model M’ with (¢, 1/, 0"), and

|2]13 () = [A@) 723, with Aw) =" wsad(s,a)p(s,a) .

s,a
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> wsoKL(P(s,a), P'(s,0)) = (1 =218 =8’ + (k= 1) TV* |} ).
s,a
In [TJP23] they show that

2 *
Am’in < ﬁ H;%X |¢T (9 - 9/ + fY(IU‘ - /’[’/)TV ) |

combine it with the lemma
A2

inf z||2 = ——.
vt oo n 1714 = oS

to obtain
(1-n)%A2

min

4max; q ||¢(s, a) H?\(w)*l '

10— 6"+ (u— 1) V¥R =
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Therefore

Y

=1 _ 2 / . 2 _ NN\ Ty 2
@)™ =, dat ) 3 onaKUPs,0) P ) 2 (=20 =040 =)V R

(1-7)*A7

min )
~ 4max, , ||4(s, a) H?\(w)—l

Hence, the optimal allocation is given by

w* = arginf max ||¢(S,a)||3\(w)*1
weQ(M) 5@
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Conclusions




Conclusions

Still many problems left...

» What is the tightest convexification we can find?

» How can we extend the results to partially observable models?

» Can we simplify the proofs?

» The bounds do not take into account the parametric uncertainty during learning.
» What is the gap between the convexified bound and the true lower bound?

>

How to extend to function approximators? Use e-net type discretization of the state-action
space S x A?

Thank you for your attention!

Conclusions 47/48



References i

B Aymen Al Marjani, Aurélien Garivier, and Alexandre Proutiere, Navigating to the best

B

policy in markov decision processes, Advances in Neural Information Processing Systems
34 (2021), 25852-25864.

Aymen Al Marjani and Alexandre Proutiere, Adaptive sampling for best policy
identification in markov decision processes, International Conference on Machine Learning,
PMLR, 2021, pp. 7459-7468.

Cheng-Der Fuh, Sprt and cusum in hidden markov models, The Annals of Statistics 31
(2003), no. 3, 942-977.

Aurélien Garivier, Pierre Ménard, and Gilles Stoltz, Explore first, exploit next: The true
shape of regret in bandit problems, Mathematics of Operations Research 44 (2019), no. 2,
377-399.

Jéréme Taupin, Yassir Jedra, and Alexandre Proutiere, Best policy identification in
discounted linear mdps, Sixteenth European Workshop on Reinforcement Learning, 2023.

References 48/48



Appendix



Non-asymptotic lower bound

To find a non-asymptotic lower bound with navigation constraints note that
N,_1(s",a")

N, (s) :1{5125}—5—2 Z 1ow: =4}
=il

’ ’
=> . N:(s,a) o5



Non-asymptotic lower bound

To find a non-asymptotic lower bound with navigation constraints note that

N,_1(s",a")
N-,— S =1 s1=s + 1 0 =glho
(s) {s1=5} Xaj ; {(W)=s}
=5, N+ (s,0) :

Therefore, using Wald’s lemma again as in the lower bound proof

En[N-(s)] = Pu(s1 = s) + Z En[Nr—1(s',a")]P(s|s',a).

s',a’



Non-asymptotic lower bound

To find a non-asymptotic lower bound with navigation constraints note that

NT 1(9 a’)
N-(s) = =1ys=5) + Sza/ Z 1{W7’,,:5}'
=>4 N-(s,a)

Therefore, using Wald’s lemma again as in the lower bound proof
En[N-(s)] = Pu(s1 = s) + Z En[Nr—1(s',a")]P(s|s',a).

Using Eps[N-—1(s,a)] < E[N,(s,a)] we can write the lower bound as
Ep[7r] > min Zns @

neRSxA
s,a

> 1., KL(P(s,a), P'(s,a)) > k(5,1 - 8) VM’ € Alt(M),

> Nea— > neaP(s|sa) <1
a s’,a’
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