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Introduction



The non-i.i.d. case

▶ In general much harder to deal with compared to the i.i.d. case.

▶ For Markovian models it is possible to say something sometimes.

▶ Extending results to partially observable models is extremely challenging [Fuh03] (and still

an open question in almost every case afaik).
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Change of Measure (recap)



Change of Measure: recap

Relate the probability of an event under a measure to another measure. Consider two measures

Pν ,Pν′ and an event E ∈ Ft, where Ft = σ(X1, . . . , Xt):

Pν′(E) = Eν′ [1E ] = Eν

1E
dPν′(X1, . . . , Xt)

dPν(X1, . . . , Xt)︸ ︷︷ ︸
=exp(−Zt)

 = Eν [1E exp(−Zt)] .

We can derive the the inequalities from this relationship.
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Change of Measure: recap - 1st low-level form

Pν′(E) = Eν [1E exp(−Zt)] .

First low-level form.

Pν′(E) = Eν [1E exp(−Zt)] ,

≥ Eν

[
1E exp(−Zt)1{Zt<x}

]
,

≥ e−xEν

[
1E1{Zt<x}

]
,

= e−xPν (E ∩ {Zt < x}) .

Thus

First low-level form

Pν (E ∩ {Zt < x}) ≤ exPν′(E).
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Change of Measure: recap - 2nd low-level form

Pν′(E) = Eν [1E exp(−Zt)] .

Second low-level form. From the first one we have

Pν′(E) ≥ e−xPν (E ∩ {Zt < x}) .

Use the fact that max(0,P(A) + P(B)− 1) ≤ P(A ∩B) ≤ min(P(A),P(B)):

Pν′(E) ≥ e−x [Pν (E) + Pν (Zt < x)− 1] ,

≥ e−x [Pν (E)− Pν (Zt ≥ x)] .

Thus

Second low-level form

Pν (E) ≤ Pν(Zt ≥ x) + exPν′(E).
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Change of Measure: recap - 2nd low-level form

Pν′(E) = Eν [1E exp(−Zt)] .

Second low-level form. From the first one we have

Pν′(E) ≥ e−xPν (E ∩ {Zt < x}) .

Use the fact that max(0,P(A) + P(B)− 1) ≤ P(A ∩B) ≤ min(P(A),P(B)):

Pν′(E) ≥ e−x [Pν (E) + Pν (Zt < x)− 1] ,

≥ e−x [Pν (E)− Pν (Zt ≥ x)] .

Thus

Second low-level form

Pν (E) ≤ Pν(Zt ≥ x) + exPν′(E).

Change of measure - 2nd low-level form 6/48



Change of Measure: recap - 2nd low-level form

Pν′(E) = Eν [1E exp(−Zt)] .

Second low-level form. From the first one we have

Pν′(E) ≥ e−xPν (E ∩ {Zt < x}) .

Use the fact that max(0,P(A) + P(B)− 1) ≤ P(A ∩B) ≤ min(P(A),P(B)):

Pν′(E) ≥ e−x [Pν (E) + Pν (Zt < x)− 1] ,

≥ e−x [Pν (E)− Pν (Zt ≥ x)] .

Thus

Second low-level form

Pν (E) ≤ Pν(Zt ≥ x) + exPν′(E).

Change of measure - 2nd low-level form 6/48



Change of Measure: recap - high-level form

Start from the beginning

Pν′(E) = Eν [1E exp(−Zt)] = Eν [1EEν [exp(−Zt)|E ]] ,
≥ Eν [1E exp (−Eν [Zt|E ])] ,
= exp (−Eν [Zt|E ]]Pν(1E = 1) + 0 · Pν(1E = 0),

= exp (−Eν [Zt|E ])Pν(E).

Repeat the same for Ec. Hence

ln
Pν(E)
Pν′(E)

≤ Eν [Zt|E ] and ln
Pν(Ec)

Pν′(Ec)
≤ Eν [Zt|Ec].

Conclude by lower bounding the terms in Eν [Lt] = Eν [Lt|E ]Pν(E) + Eν [Lt|Ec]Pν(Ec).

High level form

Eν [Lt] ≥ kl(Pν(E),Pν′(E)) with kl(x, y) = x ln(x/y) + (1− x) ln((1− x)/(1− y)).
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Detecting a change in a stream

of data as quickly as possible



Quickest Change Detection

We now look at a different problem, called Quickest Change Detection.

▶ Suppose you observe a stream of random variables X1, X2, X3 . . . .

▶ The conditional density function of Xn is f0(Xn|X1, . . . , Xn−1) for n < ν and

f1(Xn|X1, . . . , Xn−1) for n ≥ ν.

▶ ν is an unknown change-time.

▶ For ν = 1, 2, . . . we let Pν denote the probability measure of the sequence when ν < ∞, and

otherwise we denote it by P∞.

QCD - Problem definition 8/48
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Quickest Change Detection (cont.)

Hypothesis Testing Problem

H0 : no change vs H1 : a change happened

▶ Ideally, we want an algorithm with a certain false alarm rate (type I error), i.e.,

E∞[τ ] ≥ 1

α
with α > 0.

▶ Performance of a detection algorithm: worst average detection delay (WADD). Let τ be

the stopping time of the algorithm (that tells you when to stop, i.e., a change was

detected), then

Ē(τ) = sup
ν≥1

ess supEν

[
(τ − ν)+|X1, . . . , Xν−1

]
.

▶ Minimum number of samples τ needed to detect a change with a given false alarm rate?

QCD - Problem definition 9/48



Quickest Change Detection: lower bound

In the i.i.d. case the information rate1 is

(T ⋆)−1 = I⋆ := lim
n→∞

1

n

ν+n∑
t=ν

ln
F1(Xt)

F0(Xt)
= KL(F1, F0).

To generalize non the non-i.i.d. setting, we require the following assumption.

Assumption (Bound on hte information rate)

Let Zn = ln f1(Xn|X1,...,Xn−1)
f0(Xn|X1,...,Xn−1)

. We assume that ∃I⋆ > 0 such that

lim
n→∞

sup
ν≥1

ess supPν

(
max
t≤n

ν+t∑
k=ν

Zk ≥ I⋆(1 + δ)n | X1, . . . , Xν−1

)
= 0 ∀δ > 0. (1)

That is, there exists some I⋆ to which n−1
∑

ν≤k≤n+ν Zk converges to in probability.

1The characteristic time is T ⋆ = (I⋆)−1.

Lower bound 10/48
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Quickest Change Detection: lower bound (cont.)

The idea is to show the following for any δ ∈ (0, 1):

(P1) lim
α→0

Pν

(
τ − ν ≤ T ⋆(1− δ) ln(1/α),

τ∑
n=ν

Zn < (1− δ2) ln(1/α) | τ ≥ ν

)
= 0,

and

(P2) lim
α→0

Pν

(
τ − ν ≤ T ⋆(1− δ) ln(1/α),

τ∑
n=ν

Zn ≥ (1− δ2) ln(1/α) | τ ≥ ν

)
= 0,

which also implies that2

lim inf
α→0

Eν [τ − ν|τ ≥ ν]

ln(1/α)
≥ 1

I⋆
= T ⋆.

2This would conclude the proof since Ē(τ) ≥ Eν [τ − ν|τ ≥ ν].
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Quickest Change Detection: lower bound (cont.)

(P2) : Pν

(
τ − ν ≤ I⋆(1− δ) ln(1/α),

τ∑
n=ν

Zn ≥ (1− δ2) ln(1/α) | τ ≥ ν

)
Let nα = T ⋆(1− δ) ln(1/α) with δ ∈ (0, 1). Then

(P2) ≤ ess supPν

(
τ − ν ≤ T ⋆(1− δ) ln(1/α), I⋆

τ∑
n=ν

Zn ≥ I⋆(1− δ)(1 + δ) ln(1/α) | τ ≥ ν

)

≤ ess supPν

(
max
t≤nα

I⋆
ν+t∑
n=ν

Zn ≥ I⋆(1− δ)(1 + δ) ln(1/α) | τ ≥ ν

)

≤ ess supPν

(
max
t≤nα

ν+t∑
n=ν

Zn ≥ I⋆(1 + δ)nα | τ ≥ ν

)
→ 0 as α → 0 by assumption.
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Quickest Change Detection: lower bound (cont.)
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Quickest Change Detection: lower bound (cont.)
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Quickest Change Detection: lower bound (final)

To prove (P1) → 0 as α → 0 we can use similar arguments as in the i.i.d. case.

Lemma (Another low-level form of the fundamental inequality)

For all x ∈ R, t ∈ N and all event E ∈ Ft we have

(Change of measure trick) Pν(E ∩ {Zt < x}) ≤ exP∞(E),

where Zt = ln dPν(X1,...,Xt)
dP∞(X1,...,Xt)

is the log-likelihood ratio.

Let t = nα, and E = {τ − ν ≤ nα}. Then E ∈ Fnα
. As in the i.i.d. case one can prove

P∞(E|τ ≥ ν) ≤ [ln(1/α)]2α. Letting x = (1− δ2) ln(1/α)

(P1) = Pν(E ∩ {Znα
< (1− δ2) ln(1/α)} | τ ≥ ν) ≤ [ln(1/α)]2αδ2 → 0 as α → 0.

Hence, the result is proven.

Lower bound 13/48
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Example with an MDP

s1 s2

1 − p1

p1

p2

1 − p2

Example with a Markov chain with 2 states. f0 has p0 = p1 = 0.5. The quantity I3 is

I = Es∼µ[KL(P1(s), P2(s))], where µ is the stationary distribution under f1.

3As α → 0 one can verify that the average log-likelihood ratio under Pν tends to this quantity.
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Best Policy Identification:

Tabular Markov Decision

Processes



Introduction

▶ Consider an MDP M = (S,A, P, r, γ) 4.

▶ S is the state space (finite);
▶ A is the action space (finite)
▶ P : S ×A → ∆(S) is the transition function.
▶ r : S ×A → [0, 1] is the reward function.
▶ γ ∈ (0, 1) is the discount factor.

▶ A policy π : s → ∆(A) maps states to distributions over actions.

▶ The value of a policy is V π(s) = Ea∼π(·|s)[Q
π(s, a)], where

Qπ(s, a) = Eπ[
∑
t≥1

γt−1r(st, at)|s0 = s, a0 = a].

▶ We assume there exists a unique optimal policy π⋆(s) = argmaxπ V
π(s),∀s ∈ S (which is

deterministic...).

4Setting studied in [AMP21, AMGP21]
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Best Policy Identification with Fixed Confidence: introduction

Estimate π⋆ as quickly as possible with confidence δ ∈ (0, 1).

▶ Assume the reward function to be deterministic and known.

▶ As usual, define τ to be the stopping time of the algorithm.

▶ Let π̂τ be the optimal arm estimated by the algorithm at the stopping time.

▶ We say that an algorithm is δ-PC (Probably Correct) if PM (τ < ∞, π̂τ = π⋆) ≥ 1− δ for

all possible models M satisfying the uniqueness of the best arm.

BPI with Fixed Confidence - Problem definition 16/48
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Best Policy Identification with Fixed Confidence: lower bound

The δ-PC event is {π̂τ ̸= π⋆}. We define the set of confusing models according to this event!

Alt(M) := {M ′ : π⋆(M ′) ̸= π⋆(M), M ′ has a unique optimal policy},

where π⋆(M ′) is the optimal policy in M ′ (sim. π⋆(M)).

Why we define the set according to the δ-PC event? Because we want to check if at the

stopping time the true MDP M is confusing for the MDP Mτ that we estimated.

Lower bound 17/48



Best Policy Identification with Fixed Confidence: lower bound

The δ-PC event is {π̂τ ̸= π⋆}. We define the set of confusing models according to this event!

Alt(M) := {M ′ : π⋆(M ′) ̸= π⋆(M), M ′ has a unique optimal policy},

where π⋆(M ′) is the optimal policy in M ′ (sim. π⋆(M)).

Why we define the set according to the δ-PC event? Because we want to check if at the

stopping time the true MDP M is confusing for the MDP Mτ that we estimated.

Lower bound 17/48



Best Policy Identification with Fixed Confidence: lower bound

The δ-PC event is {π̂τ ̸= π⋆}. We define the set of confusing models according to this event!

Alt(M) := {M ′ : π⋆(M ′) ̸= π⋆(M), M ′ has a unique optimal policy},

where π⋆(M ′) is the optimal policy in M ′ (sim. π⋆(M)).

Why we define the set according to the δ-PC event? Because we want to check if at the

stopping time the true MDP M is confusing for the MDP Mτ that we estimated.

Lower bound 17/48



Best Policy Identification with Fixed Confidence: lower bound (cont.)

Consider then the log-likelihood ratio Zt = ln
dPM (S1,A1,R1,S

′
1,...,St,At,Rt,S

′
t)

dPM′ (S1,A1,R1,S′
1,...,St,At,Rt,S′

t)
between M and

M ′ ∈ Alt(M)5. Then:

EM [Zτ ] = EM

[
τ∑

n=1

∑
s,a

1{Sn=s,An=a} ln
P (S′

n|s, a)
P ′(S′

n|s, a)

]
.

Let Zτ (s, a) =
∑τ

n=1 1{Sn=s,An=a} ln
P (S′

n|s,a)
P ′(S′

n|s,a)
and Nt(s, a) be the time number of times

(s, a) has been selected up to time t. Then

EM [Zτ (s, a)] = EM


Nτ (s,a)∑
n=1

ln
P (Yn|s, a)
P ′(Yn|s, a)︸ ︷︷ ︸

Wn

 = EM

[ ∞∑
n=1

1{Nτ (s,a)≥n}Wn

]
.

5We indicate by S′
n the state observed after taking action An in state Sn

Lower bound 18/48
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Best Policy Identification with Fixed Confidence: lower bound (cont.)

EM [Zτ (s, a)] = EM

[ ∞∑
n=1

1{Nτ (s,a)≥n}Wn

]
.

Note that the event {Nτ (s, a) ≥ n} = {Nτ (s, a) ≤ n− 1}c ∈ Fn−1 (the filtration of the data

up to and including round n− 1). Since Wn is independent of Fn−1, then we have

EM [Zτ (s, a)] = EM

[ ∞∑
n=1

1{Nτ (s,a)≥n}

]
KL(P (s, a), P ′(s, a)),

=

∞∑
n=1

PM (Nτ (s, a) ≥ n)KL(P (s, a), P ′(s, a)),

= EM [Nτ (s, a)]KL(P (s, a), P ′(s, a)),

Lower bound 19/48
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Best Policy Identification with Fixed Confidence: lower bound (cont.)

EM [Zτ ] =
∑
s,a

EM [Nτ (s, a)]KL(P (s, a), P ′(s, a)).

Lemma (Fundamental inequality [GMS19])

For any Fτ -measurable r.v. Y ∈ [0, 1] we have EM1 [Zτ (M1,M0)] ≥ kl (EM1 [Y ],EM0 [Y ]) .

We apply it and choose Y = 1E , E = {π̂τ = π⋆(M)}:

EM [Zτ ] =
∑
s,a

EM [Nτ (s, a)]KL(P (s, a), P ′(s, a)) ≥ kl(1− δ, δ).

since PM (E) ≥ 1− δ and PM ′(E) ≤ δ from the fact that E ⊂ {π̂τ ̸= π⋆(M ′)} under PM ′ .
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Best Policy Identification with Fixed Confidence: lower bound (cont.)

We can take the infimum over the set of confusing models:

inf
M ′∈Alt(M)

∑
s,a

EM [Nτ (s, a)]KL(P (s, a), P ′(s, a)) ≥ kl(1− δ, δ),

which yields the most confusing model.

Divide and multiply the left hand-side by EM [τ ] and let ωs,a := EM [Nτ (s, a)]/EM [τ ]:

EM [τ ] inf
M ′∈Alt(M)

∑
s,a

ωs,aKL(P (s, a), P ′(s, a)) ≥ kl(1− δ, δ).

Therefore, we conclude by optimizing over ωs,a ∈ ∆(S ×A) (the simplex states and actions):

EM [τ ] sup
ω∈∆(S×A)

inf
M ′∈Alt(M)

∑
s,a

ωs,aKL(P (s, a), P ′(s, a)) ≥ kl(1− δ, δ).

Lower bound 21/48
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Best Policy Identification with Fixed Confidence: lower bound (final)

sup
ω∈∆(S×A)

inf
M ′∈Alt(M)

∑
s,a

ωs,aKL(P (s, a), P ′(s, a))

is that it? We are missing the navigation constraints! (forward model).

For ergodic models, as δ → 0, we have that ω tends to the stationary distribution over states

and actions.Hence we can take the limit and find that 6

lim inf
δ→0

EM [τ ]

ln(1/δ)
≥ T ⋆,

where

(T ⋆)−1 := sup
ω∈Ω(M)

inf
M ′∈Alt(M)

∑
s,a

ws,aKL(P (s, a), P ′(s, a))

with Ω(M) = {ω ∈ ∆(S ×A) :
∑

a ωs,a =
∑

s′,a′ P (s|s′, a′)ωs′,a′} (Kolmogorov equations).

6Find a non-asymptotic approach in the appendix.
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Set of confusing model is non-convex!

s1 s2

a1 : (r1, p1)

a2 : (r2, p2)

a1 : (r1, 1 − p1)

a2 : (0, 1 − p2)

(0, 1)

▶ Consider the MDP in figure, where the starting state is s1. In each edge we indicate the

action and the corresponding reward and transition probability (no action = all actions).

▶ The optimal Q-values in s1 are

Q⋆(s1, a1) = r1 + γp1V
⋆(s1) and Q⋆(s1, a2) = p2(r2 + γV ⋆(s1)).

Therefore

V ⋆(s1) = max

Å
r1

1− γp1
,

p2r2
1− γp2

ã
Non-Convexity 23/48
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Set of confusing model is non-convex!

s1 s2

a1 : (r1, p1)

a2 : (r2, p2)

a1 : (0, 1 − p1)

a2 : (0, 1 − p2)

(0, 1)

1. ϕ1: fix r1 = 0.7, p1 = 0.9, r2 = 0.3, p2 = 1 then a1 is optimal and Q⋆(s1, a1) ≈ 3.68.

2. ϕ2: fix r1 = 0.7, p1 = 0.1, r2 = 0.3, p2 = 0.77 then a1 is optimal and Q⋆(s1, a1) ≈ 0.77.

3. ϕavg: take the average between these two models. Then p1 = 0.5, p2 = 0.885. a2 is

optimal and Q⋆(s1, a2) ≈ 1.30

If the first two models ϕ1, ϕ2 belong to Alt, then their average ϕavg does not!

Non-Convexity 24/48



Set of confusing model is non-convex!

s1 s2

a1 : (r1, p1)

a2 : (r2, p2)

a1 : (0, 1 − p1)

a2 : (0, 1 − p2)

(0, 1)

1. ϕ1: fix r1 = 0.7, p1 = 0.9, r2 = 0.3, p2 = 1 then a1 is optimal and Q⋆(s1, a1) ≈ 3.68.

2. ϕ2: fix r1 = 0.7, p1 = 0.1, r2 = 0.3, p2 = 0.77 then a1 is optimal and Q⋆(s1, a1) ≈ 0.77.

3. ϕavg: take the average between these two models. Then p1 = 0.5, p2 = 0.885. a2 is

optimal and Q⋆(s1, a2) ≈ 1.30

If the first two models ϕ1, ϕ2 belong to Alt, then their average ϕavg does not!

Non-Convexity 24/48



Set of confusing model is non-convex!

s1 s2

a1 : (r1, p1)

a2 : (r2, p2)

a1 : (0, 1 − p1)

a2 : (0, 1 − p2)

(0, 1)

1. ϕ1: fix r1 = 0.7, p1 = 0.9, r2 = 0.3, p2 = 1 then a1 is optimal and Q⋆(s1, a1) ≈ 3.68.

2. ϕ2: fix r1 = 0.7, p1 = 0.1, r2 = 0.3, p2 = 0.77 then a1 is optimal and Q⋆(s1, a1) ≈ 0.77.

3. ϕavg: take the average between these two models. Then p1 = 0.5, p2 = 0.885. a2 is

optimal and Q⋆(s1, a2) ≈ 1.30

If the first two models ϕ1, ϕ2 belong to Alt, then their average ϕavg does not!

Non-Convexity 24/48



Set of confusing model is non-convex!

Regarding the non-convexity:

▶ If you check the original example from [AMP21] it is incorrect.

▶ We used the same reward in ϕ1, ϕ2 because we assumed to know the reward function!.

▶ Non-convexity seems to arise due to the probability values appearing both at the

numerator and denominator V ⋆(s1) = max
Ä

r1
1−γp1

, p2r2
1−γp2

ä
.

▶ However, in simple MDPs with known rewards, where (I − γPπ⋆

)−1 has a nice structure,

maybe it is possible to have convexity...

▶ We have similar comments if we know the transition function but not the rewards

distributions.
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numerator and denominator V ⋆(s1) = max
Ä

r1
1−γp1

, p2r2
1−γp2

ä
.

▶ However, in simple MDPs with known rewards, where (I − γPπ⋆

)−1 has a nice structure,

maybe it is possible to have convexity...

▶ We have similar comments if we know the transition function but not the rewards

distributions.
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Can we convexify the lower bound?

Convexification

Can we convexify the lower bound?

We know that

lim inf
δ→0

EM [τ ]

ln(1/δ)
≥ T ⋆.

Define T−1(ω) = infM ′∈Alt(M) E(s,a)∼ω[KL(P (s, a), P ′(s, a))].

Convexification

Can we find U(ω) s.t. for every ω we have that U is convex in ω and T (ω) ≤ U(ω) ?
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Ideas

T−1(ω) = inf
M ′∈Alt(M)

E(s,a)∼ω[KL(P (s, a), P ′(s, a))].

We want to find U(ω) s.t. T (ω) ≤ U(ω).

1. Is it possible to lower bound the sum of KL divergences so that the constraint is always

satisfied?

2. Then, can we rewrite the constraints in a way that is related to the KL terms?

3. We know that the KL is roughly variance over gaps squared → try to write the constraints

in terms of the sub-optimality gaps? 7.

7The sub-optimality gap is defined as ∆(s, a) = V ⋆(s)−Q⋆(s, a).

Convexification 27/48



Ideas

T−1(ω) = inf
M ′∈Alt(M)

E(s,a)∼ω[KL(P (s, a), P ′(s, a))].

We want to find U(ω) s.t. T (ω) ≤ U(ω).

1. Is it possible to lower bound the sum of KL divergences so that the constraint is always

satisfied?

2. Then, can we rewrite the constraints in a way that is related to the KL terms?

3. We know that the KL is roughly variance over gaps squared → try to write the constraints

in terms of the sub-optimality gaps? 7.

7The sub-optimality gap is defined as ∆(s, a) = V ⋆(s)−Q⋆(s, a).

Convexification 27/48



Ideas

T−1(ω) = inf
M ′∈Alt(M)

E(s,a)∼ω[KL(P (s, a), P ′(s, a))].

We want to find U(ω) s.t. T (ω) ≤ U(ω).

1. Is it possible to lower bound the sum of KL divergences so that the constraint is always

satisfied?

2. Then, can we rewrite the constraints in a way that is related to the KL terms?

3. We know that the KL is roughly variance over gaps squared → try to write the constraints

in terms of the sub-optimality gaps? 7.

7The sub-optimality gap is defined as ∆(s, a) = V ⋆(s)−Q⋆(s, a).

Convexification 27/48



Rewriting the set of confusing models [1/2]

Lemma

We have that

Alt(M) = ∪s,a̸=π⋆(s)Alts,a(M) where Alts,a(M) = {M ′ : Qπ⋆

M ′(s, a) > V π⋆

M ′ (s)}.

where π⋆ is the optimal policy in M and V π⋆

M ′ is the evaluation of π⋆ in M ′.

We begin by proving that Alt(M) ⊂ ∪s,a̸=π⋆(s)Alts,a(M) (which is more important, why?).

▶ By contradiction, assume ∃M ′ ∈ Alt(M) s.t. ∀s, a ̸= π⋆(s) we have M ′ /∈ Alts,a(M).

▶ Therefore Qπ⋆

M ′(s, a) ≤ V π⋆

M ′ (s) for every s, a ̸= π⋆(s).

▶ Moreover Qπ⋆

M ′(s, π⋆(s)) = V π⋆

M ′ (s) for every s.

▶ Hence Qπ⋆

M ′(s, a) ≤ V π⋆

M ′ (s) for every (s, a).

▶ By the policy improvement theorem there does not exists any action that improves the

policy, hence π⋆ is optimal in M ′ ⇒ contradiction!
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Rewriting the set of confusing models [2/2]

Lemma

We have that

Alt(M) = ∪s,a̸=π⋆(s)Alts,a(M) where Alts,a(M) = {M ′ : Qπ⋆

M ′(s, a) > V π⋆

M ′ (s)}.

where π⋆ is the optimal policy in M and V π⋆

M ′ is the evaluation of π⋆ in M ′.

We now prove Alt(M) ⊃ ∪s,a̸=π⋆(s)Alts,a(M).

▶ Consider a generic pair s0, a0 ̸= π⋆(s0). By contradiction, assume ∃M ′ ∈ Alts0,a0
(M)

s.t.M ′ /∈ Alt(M).

▶ Define the policy

π′(s) =

{
a0 s = s0,

π⋆(s) otherwise.

▶ Then, we have that Qπ⋆

M ′(s0, π
′(s0)) > V π⋆

M ′ (s0). However, if M
′ /∈ Alt(M), then π⋆ is

optimal in M ′, which is not possible again by the policy improvement theorem.
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Relating the sub-optimality gaps to the KL terms

Using this decomposition we get

T−1(ω) = inf
M ′∈Alt(M)

E(s,a)∼ω[KL(P (s, a), P ′(s, a))],

= min
s,a̸=π⋆(s)

inf
M ′∈Alts,a(M)

E(s,a)∼ω[KL(P (s, a), P ′(s, a))],

= min
s,a̸=π⋆(s)

inf
M ′∈Alts,a(M)

ω(s, a)KL(P (s, a), P ′(s, a))

+
∑
s′

ωs′,π⋆(s′)KL(P (s′, π⋆(s′), P ′(s′, π⋆(s′))),

≥ min
s,a̸=π⋆(s)

inf
M ′∈Alts,a(M)

ω(s, a)KL(P (s, a), P ′(s, a))

+ (min
s′

ωs′,π⋆(s′))max
s′

KL(P (s′, π⋆(s′), P ′(s′, π⋆(s′))),

where we used the fact that the constraints only involve the pairs {(s, a), (s′, π⋆(s′))s′}.
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Relating the sub-optimality gaps to the KL terms

So we have that

Alt(M) = ∪s,a̸=π⋆(s)Alts,a(M) where Alts,a(M) = {M ′ : Qπ⋆

M ′(s, a) > V π⋆

M ′ (s)}.

How can we relate the KL terms to this constraint and to ∆(s, a)? We know that

∆s,a +Q⋆(s, a) = V ⋆(s). Then combine the inequality with this equality to get

∆(s, a) < V ⋆(s)− V π⋆

M ′ (s) +Qπ⋆

M ′(s, a)−Q⋆(s, a)± Es′∼P ′(s,a)[V
⋆(s′)].

from which follows that (we write in vector form)

∆(s, a) < ∆V (s) + γP ′(s, a)⊤∆V +∆P (s, a)⊤V ⋆,

< (γP ′(s, a)− 1s)
⊤∆V +∆P (s, a)⊤V ⋆.

where ∆V = V π⋆

M ′ − V ⋆,∆P (s, a) = P ′(s, a)− P (s, a), which are all vectors of size |S|.
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Relating the sub-optimality gaps to the KL terms

∆(s, a) < (γP ′(s, a)− 1s)
⊤∆V +∆P (s, a)⊤V ⋆.

We upper bound ∆V using

|∆V (s)| = γ|Es′∼P ′(s,π⋆(s))[V
π⋆

M ′ (s′)]− Es′∼P (s,π⋆(s))[V
⋆(s′)]|,

≤ γ(|P ′(s, π⋆(s))⊤∆V |+ |∆P (s, π⋆(s))⊤V ⋆|),
≤ γ(∥∆V ∥∞ + |∆P (s, π⋆(s))⊤V ⋆|).

Therefore ∥∆V ∥∞ ≤ γ|∆P (s,π⋆(s))⊤V ⋆|
1−γ and

∆(s, a) <
γ|∆P (s, π⋆(s))⊤V ⋆|

1− γ
+∆P (s, a)⊤V ⋆.

We have rewritten the inequality in terms of the inner product ∆P⊤V ⋆. Can we upper bound

this using the KL between P and P ′?
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π(s′′)])2
]
.
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∥∥V π(s′)− Es′′∼P (s,a)[V
π(s′′)]

∥∥
∞.
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Lemma

Let (s, a) ∈ S ×A. For any policy π we have that

|(V π)⊤∆P (s, a)| ≤ 4KL(P (s, a), P ′(s, a))
[
2Vars,a(V

π)

+
»

2KL(P (s, a), P ′(s, a))MDs,a(V
π)2
]
.

where V π ∈ R|S| is the vector of values of the policy π and

∆P (s, a) =
î
P ′(s1|s, a)− P (s1|s, a) . . . P ′(s|S||s, a)− P (s|S||s, a)

ó⊤
.

Let µπ = Es′∼P (·|s,a)[V
π(s′)] and note that (V π)⊤∆P (s, a) = (V π − µπ)⊤∆P (s, a).

|(V π − µπ)⊤∆P (s, a)| ≤
∣∣∣[(»P ′(s, a)−

»
P (s, a)) ◦ (

»
P ′(s, a) +

»
P (s, a))]⊤(V π − µπ)

∣∣∣
where

√
x is element-wise, and similarly ◦ is the element-wise product.
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|(V π)⊤∆P (s, a)|2 ≤
∣∣∣[(»P ′(s, a)−

»
P (s, a)) ◦ (

»
P ′(s, a) +

»
P (s, a))]⊤(V π − µπ))

∣∣∣2 ,
=
∣∣∣(»P ′(s, a)−

»
P (s, a))⊤[(

»
P ′(s, a) +

»
P (s, a)) ◦ (V π − µπ))]

∣∣∣2 ,
(a)

≤
∥∥∥»P ′(s, a)−

»
P (s, a)

∥∥∥2
2

∥∥∥(»P ′(s, a) +
»
P (s, a)) ◦ (V π − µπ))]

∥∥∥2
2
,

(b)

≤ 4H2(P (s, a), P ′(s, a))
[
|P ′(s, a) + P (s, a)|⊤(V π − µπ)◦2)

]
,

(c)

≤ 4KL(P (s, a), P ′(s, a))
[
|P ′(s, a) + 2P (s, a)− P (s, a)|⊤(V π − µπ)◦2)

]
,

≤ 4KL(P (s, a), P ′(s, a))
[
2Vars,a(V

π) + ∥P ′(s, a)− P (s, a)∥1MDs,a(V
π)2
]
,

≤ 4KL(P (s, a), P ′(s, a))
[
2Vars,a(V

π) +
»
2KL(P (s, a), P ′(s, a))MDs,a(V

π)2
]
.

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger’s distance (add a factor 2) and used

(a+ b)2 ≤ 2(a2 + b2); (c) H(P,Q) ≤
√
KL(P,Q).
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Relating the sub-optimality gaps to the KL terms

∆(s, a) <
γ|∆P (s, π⋆(s))⊤V ⋆|

1− γ
+∆P (s, a)⊤V ⋆.

We also want to relate each term on the r.h.s. to a fraction of ∆(s, a) to be able to bound the

individual KL terms using the gaps.

Introduce α1, α2 ≥ 0 s.t. α1 + α2 > 1 and let

α1∆(s, a) =
γ|∆P (s, π⋆(s))⊤V ⋆|

1− γ
, (2)

α2∆(s, a) = ∆P (s, a)⊤V ⋆. (3)
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Relating the sub-optimality gaps to the KL terms

Using the lemma, for α2∆(s, a) we find

(α2∆(s, a))2︸ ︷︷ ︸
=|∆P (s,a)⊤V ⋆|2

≤ 4KL(P (s, a), P ′(s, a))
[
2Vars,a(V

π) +
»

2KL(P (s, a), P ′(s, a))MDs,a(V
π)2
]
.

Use a+ b ≤ 2max(a, b). Then

(α2∆(s, a))2

16Vars,a(V π)
≤ KL(P (s, a), P ′(s, a)) or

(α2∆(s, a))4/3

27/3MDs,a(V π)4/3
≤ KL(P (s, a), P ′(s, a)).

Hence

min

Ç
(α2∆(s, a))2

16Vars,a(V π)
,

(α2∆(s, a))4/3

27/3MDs,a(V π)4/3

å
≤ KL(P (s, a), P ′(s, a)).
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Relating the sub-optimality gaps to the KL terms

Similarly, for α1∆(s, a) = γ|∆P (s,π⋆(s))⊤V ⋆|
1−γ we get

min

Ç
(α1∆min(1− γ))2

16maxs Vars,π⋆(s)(V π)
,

(α1∆min(1− γ))4/3

27/3 maxs MDs,π⋆(s)(V π)4/3

å
≤ max

s
KL(P (s, π⋆(s)), P ′(s, π⋆(s))).

where ∆min = mins,a̸=π⋆(s) ∆(s, a).
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Let B2(s, a, α2) = min
(

(α2∆(s,a))2

16Vars,a(V π) ,
(α2∆(s,a))4/3

27/3MDs,a(V π)4/3

)
and

B1(α1) = min
(

(α1∆min(1−γ))2

16maxs Vars,π⋆(s)(V π) ,
(α1∆min(1−γ))4/3

27/3 maxs MDs,π⋆(s)(V π)4/3

)
.

Applying what we have learnt we get

T−1(ω) ≥ min
s,a̸=π⋆(s)

inf
M ′∈Alts,a(M)

ω(s, a)KL(P (s, a), P ′(s, a))

+ (min
s′

ωs′,π⋆(s′))max
s′

KL(P (s′, π⋆(s′), P ′(s′, π⋆(s′))),

≥ min
s,a̸=π⋆(s)

inf
α1+α2>1

ω(s, a)B2(s, a, α2) + (min
s′

ωs′,π⋆(s′))B1(α1).

Note that for any α satisfying
∑

i αi > 1 we also have that αi/
∑

i αi satisfies the previous KL

inequalities.
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Relating the sub-optimality gaps to the KL terms

Let B2(s, a, α2) = min
(

(α2∆(s,a))2

16Vars,a(V π) ,
(α2∆(s,a))4/3

27/3MDs,a(V π)4/3

)
and

B1(α1) = min
(

(α1∆min(1−γ))2

16maxs Vars,π⋆(s)(V π) ,
(α1∆min(1−γ))4/3

27/3 maxs MDs,π⋆(s)(V π)4/3

)
.
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T−1(ω) ≥ min
s,a̸=π⋆(s)

inf
M ′∈Alts,a(M)

ω(s, a)KL(P (s, a), P ′(s, a))

+ (min
s′

ωs′,π⋆(s′))max
s′

KL(P (s′, π⋆(s′), P ′(s′, π⋆(s′))),
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Relating the sub-optimality gaps to the KL terms

For αi in the simplex, we also have α2
i ≤ α

4/3
i . Thus

T−1(ω) ≥ min
s,a̸=π⋆(s)

inf
αi∈∆(2)

ω(s, a)α2B2(s, a) + α2
1(min

s′
ωs′,π⋆(s′))B1.

where B2(s, a) = min
(

∆(s,a)2

16Vars,a(V π) ,
∆(s,a)4/3

27/3MDs,a(V π)4/3

)
and

B1 = min
(

(∆min(1−γ))2

16maxs Vars,π⋆(s)(V π) ,
(∆min(1−γ))4/3

27/3 maxs MDs,π⋆(s)(V π)4/3

)
.Optimizing over α yields

T−1(ω) ≥ min
s,a̸=π⋆(s)

Ç
1

ω(s, a)B2(s, a)
+

1

mins′ ωs′,π⋆(s′))B1

å−1

.
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Relating the sub-optimality gaps to the KL terms (final)

T−1(ω) ≥ min
s,a̸=π⋆(s)

Ç
1

ω(s, a)B2(s, a)
+

1

mins′ ωs′,π⋆(s′)B1

å−1

.

Then

T (ω) ≤ max
s,a̸=π⋆(s)

Hs,a

ω(s, a)∆(s, a)2
+

H⋆

mins′ ωs′,π⋆(s′)
=: U(ω).

with

Hs,a = max

Ç
16Vars,a(V

π)

∆(s, a)2
,
27/3MDs,a(V

π)4/3

∆(s, a)4/3

å
,

H⋆ = max

Ç
16maxs Vars,π⋆(s)(V

π)

(1− γ)2∆2
min

,
27/3 maxs MDs,π⋆(s)(V

π)4/3

((∆min(1− γ))4/3

å
.
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Relating the sub-optimality gaps to the KL terms (final)
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Ç
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Ç
16maxs Vars,π⋆(s)(V
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min
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27/3 maxs MDs,π⋆(s)(V

π)4/3

((∆min(1− γ))4/3

å
.
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Conclusions

T (ω) ≤ max
s,a̸=π⋆(s)

Hs,a

ω(s, a)∆(s, a)2
+

H⋆

mins′ ωs′,π⋆(s′)
=: U(ω).

with

Hs,a = max

Ç
16Vars,a(V

π)

∆(s, a)2
,
27/3MDs,a(V

π)4/3

∆(s, a)4/3

å
,

H⋆ = max

Ç
16maxs Vars,π⋆(s)(V

π)

(1− γ)2∆2
min

,
27/3 maxs MDs,π⋆(s)(V

π)4/3

((∆min(1− γ))4/3

å
.

▶ If we plug in a uniform distribution ω(s, a) = 1/(|S||A|) the bound scales roughly as

O
(

|S||A|
∆2

min(1−γ)4

)
. The factor on γ be improved to 1/(1− γ)3 (see [AMP21]).

▶ Many open questions:
▶ Possible to find a tighter bound? Simpler proof?
▶ Possible to characterize the gap U(ω)− T (ω)?
▶ Are there some cases where the set of confusing models is convex, and we can compute T ⋆

exactly?
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Best Policy Identification: Linear

Markov Decision Processes



Introduction

Consider a linear MDP M = (S,A, P, r, γ) s.t. to each pair (s, a) is associated a feature vector

ϕ(s, a) ∈ Rd, satisfying ∥ϕ(s, a)∥ ≤ 1 8.

▶ S is the state space (finite);

▶ A is the action space (finite)

▶ P (s′|s, a) = ϕ(s, a)⊤µ(s′) and r(s, a) = ϕ(s, a)⊤θ for some µ : S → Rd and θ ∈ Rd.

▶ γ ∈ (0, 1) is the discount factor.

8Setting studied in [TJP23]
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Lower bound

The steps are (almost) the same as before. In [TJP23] they find that∑
s,a

ωs,aKL(P (s, a), P ′(s, a)) ≥ (1− γ)2
∑
s,a

ωs,a|ϕ⊤ (θ − θ′ + γ(µ− µ′)⊤V ⋆
)
|2,

= (1− γ)2∥θ − θ′ + γ(µ− µ′)⊤V ⋆∥2Λ(ω),

where we are considering an alternative model M ′ with (ϕ′, µ′, θ′), and

∥x∥2Λ(ω) = ∥Λ(ω) 1
2x∥22, with Λ(ω) =

∑
s,a

ωs,aϕ(s, a)ϕ(s, a)
⊤.
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Lower bound

∑
s,a

ωs,aKL(P (s, a), P ′(s, a)) ≥ (1− γ)2∥θ − θ′ + γ(µ− µ′)⊤V ⋆∥2Λ(ω).

In [TJP23] they show that

∆min ≤ 2

1− γ
max
s,a

|ϕ⊤ (θ − θ′ + γ(µ− µ′)⊤V ⋆
)
|

combine it with the lemma

inf
x∈Rd:|ϕ⊤x|≥∆

∥x∥2Λ =
∆2

∥ϕ∥2Λ−1

.

to obtain

∥θ − θ′ + γ(µ− µ′)⊤V ⋆∥2Λ(ω) ≥
(1− γ)2∆2

min

4maxs,a ∥ϕ(s, a)∥2Λ(ω)−1

.
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Lower bound

Therefore

(T (ω))−1 = inf
M ′∈Alt(M)

∑
s,a

ωs,aKL(P (s, a), P ′(s, a)) ≥ (1− γ)2∥θ − θ′ + γ(µ− µ′)⊤V ⋆∥2Λ(ω),

≥ (1− γ)4∆2
min

4maxs,a ∥ϕ(s, a)∥2Λ(ω)−1

.

Hence, the optimal allocation is given by

ω⋆ = arg inf
ω∈Ω(M)

max
s,a

∥ϕ(s, a)∥2Λ(ω)−1
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Conclusions

Still many problems left...

▶ What is the tightest convexification we can find?

▶ How can we extend the results to partially observable models?

▶ Can we simplify the proofs?

▶ The bounds do not take into account the parametric uncertainty during learning.

▶ What is the gap between the convexified bound and the true lower bound?

▶ How to extend to function approximators? Use ϵ-net type discretization of the state-action

space S ×A?

Thank you for your attention!
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Appendix



Non-asymptotic lower bound

To find a non-asymptotic lower bound with navigation constraints note that

Nτ (s)︸ ︷︷ ︸
=
∑

a Nτ (s,a)

= 1{s1=s} +
∑
s′,a′

Nτ−1(s
′,a′)∑

n=1

1{W ′
n=s}.

Therefore, using Wald’s lemma again as in the lower bound proof

EM [Nτ (s)] = PM (s1 = s) +
∑
s′,a′

EM [Nτ−1(s
′, a′)]P(s|s′, a′).

Using EM [Nτ−1(s, a)] ≤ E[Nτ (s, a)] we can write the lower bound as

EM [τ ] ≥ min
n∈RS×A

∑
s,a

ns,a

s.t.
∑
s,a

ns,aKL(P (s, a), P ′(s, a)) ≥ kl(δ, 1− δ) ∀M ′ ∈ Alt(M),

∑
a

ns,a −
∑
s′,a′

ns′,a′P (s|s′, a′) ≤ 1.
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