

Tutorial: Sample Complexity Lower Bounds

The non-i.i.d. case

Alessio Russo

September 2024

Boston University

Overview i

- Introduction
- 2 Change of Measure (recap)
- 3 Detecting a change in a stream of data as quickly as possible
- 4 Best Policy Identification: Tabular Markov Decision Processes
- **5** Best Policy Identification: Linear Markov Decision Processes
- **6** Conclusions

Introduction

The non-i.i.d. case

- ▶ In general much harder to deal with compared to the i.i.d. case.
- ► For Markovian models it is possible to say something sometimes.
- Extending results to partially observable models is extremely challenging [Fuh03] (and still an open question in almost every case afaik).

Introduction 3/48

The non-i.i.d. case

- ▶ In general much harder to deal with compared to the i.i.d. case.
- ► For Markovian models it is possible to say something sometimes.
- Extending results to partially observable models is extremely challenging [Fuh03] (and still an open question in almost every case afaik).

Introduction 3/48

The non-i.i.d. case

- ▶ In general much harder to deal with compared to the i.i.d. case.
- ► For Markovian models it is possible to say something sometimes.
- Extending results to partially observable models is extremely challenging [Fuh03] (and still an open question in almost every case afaik).

Introduction 3/48

Change of Measure (recap)

Change of Measure: recap

Relate the probability of an event under a measure to another measure. Consider two measures $\mathbb{P}_{\nu}, \mathbb{P}_{\nu'}$ and an event $\mathcal{E} \in \mathcal{F}_t$, where $\mathcal{F}_t = \sigma(X_1, \dots, X_t)$:

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu'}[\mathbf{1}_{\mathcal{E}}] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \underbrace{\frac{d\mathbb{P}_{\nu'}(X_1, \dots, X_t)}{d\mathbb{P}_{\nu}(X_1, \dots, X_t)}}_{=\exp(-Z_t)} \right] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

We can derive the the inequalities from this relationship.

Change of Measure 4/48

Change of Measure: recap

Relate the probability of an event under a measure to another measure. Consider two measures $\mathbb{P}_{\nu}, \mathbb{P}_{\nu'}$ and an event $\mathcal{E} \in \mathcal{F}_t$, where $\mathcal{F}_t = \sigma(X_1, \dots, X_t)$:

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu'}[\mathbf{1}_{\mathcal{E}}] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \underbrace{\frac{\mathrm{d}\mathbb{P}_{\nu'}(X_1, \dots, X_t)}{\mathrm{d}\mathbb{P}_{\nu}(X_1, \dots, X_t)}}_{=\exp(-Z_t)} \right] = \mathbb{E}_{\nu} \left[\mathbb{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

We can derive the the inequalities from this relationship.

Change of Measure 4/48

Change of Measure: recap

Relate the probability of an event under a measure to another measure. Consider two measures $\mathbb{P}_{\nu}, \mathbb{P}_{\nu'}$ and an event $\mathcal{E} \in \mathcal{F}_t$, where $\mathcal{F}_t = \sigma(X_1, \dots, X_t)$:

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu'}[\mathbf{1}_{\mathcal{E}}] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \underbrace{\frac{\mathrm{d}\mathbb{P}_{\nu'}(X_1, \dots, X_t)}{\mathrm{d}\mathbb{P}_{\nu}(X_1, \dots, X_t)}}_{=\exp(-Z_t)} \right] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

We can derive the the inequalities from this relationship.

Change of Measure 4/48

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

First low-level form.

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right],$$

$$\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \mathbf{1}_{\{Z_t < x\}} \right],$$

$$\geq e^{-x} \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbf{1}_{\{Z_t < x\}} \right],$$

$$= e^{-x} \mathbb{P}_{\nu} \left(\mathcal{E} \cap \{Z_t < x\} \right).$$

Thus

$$\mathbb{P}_{\nu}\left(\mathcal{E} \cap \{Z_t < x\}\right) \le e^x \mathbb{P}_{\nu'}(\mathcal{E})$$

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

First low-level form.

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right],$$

$$\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \mathbf{1}_{\{Z_t < x\}} \right],$$

$$\geq e^{-x} \mathbb{E}_{\nu} \left[\mathbb{1}_{\mathcal{E}} \mathbb{1}_{\{Z_t < x\}} \right],$$

$$= e^{-x} \mathbb{P}_{\nu} \left(\mathcal{E} \cap \{Z_t < x\} \right).$$

Thus

$$\mathbb{P}_{\nu}\left(\mathcal{E} \cap \{Z_t < x\}\right) \le e^x \mathbb{P}_{\nu'}(\mathcal{E})$$

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

First low-level form.

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right],$$

$$\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \mathbf{1}_{\{Z_t < x\}} \right],$$

$$\geq e^{-x} \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbf{1}_{\{Z_t < x\}} \right],$$

$$= e^{-x} \mathbb{P}_{\nu} \left(\mathcal{E} \cap \{Z_t < x\} \right).$$

Thus

$$\mathbb{P}_{\nu}\left(\mathcal{E} \cap \{Z_t < x\}\right) \le e^x \mathbb{P}_{\nu'}(\mathcal{E})$$

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

First low-level form.

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right],$$

$$\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \mathbf{1}_{\{Z_t < x\}} \right],$$

$$\geq e^{-x} \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbf{1}_{\{Z_t < x\}} \right],$$

$$= e^{-x} \mathbb{P}_{\nu} \left(\mathcal{E} \cap \{Z_t < x\} \right).$$

Thus

$$\mathbb{P}_{\nu}\left(\mathcal{E} \cap \{Z_t < x\}\right) \le e^x \mathbb{P}_{\nu'}(\mathcal{E}).$$

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

Second low-level form. From the first one we have

$$\mathbb{P}_{\nu'}(\mathcal{E}) \ge e^{-x} \mathbb{P}_{\nu} \left(\mathcal{E} \cap \{ Z_t < x \} \right).$$

Use the fact that $\max(0, \mathbb{P}(A) + \mathbb{P}(B) - 1) \leq \mathbb{P}(A \cap B) \leq \min(\mathbb{P}(A), \mathbb{P}(B))$:

$$\mathbb{P}_{\nu'}(\mathcal{E}) \ge e^{-x} \left[\mathbb{P}_{\nu} \left(\mathcal{E} \right) + \mathbb{P}_{\nu} \left(Z_t < x \right) - 1 \right],$$

$$\ge e^{-x} \left[\mathbb{P}_{\nu} \left(\mathcal{E} \right) - \mathbb{P}_{\nu} \left(Z_t \ge x \right) \right].$$

Thus

Second low-level form

$$\mathbb{P}_{\nu}\left(\mathcal{E}\right) \leq \mathbb{P}_{\nu}(Z_t \geq x) + e^x \mathbb{P}_{\nu'}(\mathcal{E}).$$

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

Second low-level form. From the first one we have

$$\mathbb{P}_{\nu'}(\mathcal{E}) \ge e^{-x} \mathbb{P}_{\nu} \left(\mathcal{E} \cap \{ Z_t < x \} \right).$$

Use the fact that $\max(0, \mathbb{P}(A) + \mathbb{P}(B) - 1) \leq \mathbb{P}(A \cap B) \leq \min(\mathbb{P}(A), \mathbb{P}(B))$:

$$\begin{split} \mathbb{P}_{\nu'}(\mathcal{E}) &\geq e^{-x} \left[\mathbb{P}_{\nu} \left(\mathcal{E} \right) + \mathbb{P}_{\nu} \left(Z_t < x \right) - 1 \right], \\ &\geq e^{-x} \left[\mathbb{P}_{\nu} \left(\mathcal{E} \right) - \mathbb{P}_{\nu} \left(Z_t \geq x \right) \right]. \end{split}$$

Thus

Second low-level form

$$\mathbb{P}_{\nu}\left(\mathcal{E}\right) \leq \mathbb{P}_{\nu}(Z_t \geq x) + e^x \mathbb{P}_{\nu'}(\mathcal{E})$$

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right].$$

Second low-level form. From the first one we have

$$\mathbb{P}_{\nu'}(\mathcal{E}) \ge e^{-x} \mathbb{P}_{\nu} \left(\mathcal{E} \cap \{ Z_t < x \} \right).$$

Use the fact that $\max(0, \mathbb{P}(A) + \mathbb{P}(B) - 1) \leq \mathbb{P}(A \cap B) \leq \min(\mathbb{P}(A), \mathbb{P}(B))$:

$$\mathbb{P}_{\nu'}(\mathcal{E}) \ge e^{-x} \left[\mathbb{P}_{\nu} \left(\mathcal{E} \right) + \mathbb{P}_{\nu} \left(Z_t < x \right) - 1 \right],$$
$$\ge e^{-x} \left[\mathbb{P}_{\nu} \left(\mathcal{E} \right) - \mathbb{P}_{\nu} \left(Z_t \ge x \right) \right].$$

Thus

Second low-level form

$$\mathbb{P}_{\nu}\left(\mathcal{E}\right) \leq \mathbb{P}_{\nu}(Z_t \geq x) + e^x \mathbb{P}_{\nu'}(\mathcal{E}).$$

Start from the beginning

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbb{E}_{\nu} [\exp(-Z_t) | \mathcal{E}] \right],
\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \right],
= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right] \mathbb{P}_{\nu} (\mathbf{1}_{\mathcal{E}} = 1) + 0 \cdot \mathbb{P}_{\nu} (\mathbf{1}_{\mathcal{E}} = 0)
= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \mathbb{P}_{\nu} (\mathcal{E}).$$

Repeat the same for \mathcal{E}^c . Hence

$$\ln \frac{P_{\nu}(\mathcal{E})}{P_{\nu'}(\mathcal{E})} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}] \text{ and } \ln \frac{P_{\nu}(\mathcal{E}^c)}{P_{\nu'}(\mathcal{E}^c)} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}^c].$$

Conclude by lower bounding the terms in $\mathbb{E}_{\nu}[L_t] = \mathbb{E}_{\nu}[L_t|\mathcal{E}]\mathbb{P}_{\nu}(\mathcal{E}) + \mathbb{E}_{\nu}[L_t|\mathcal{E}^c]\mathbb{P}_{\nu}(\mathcal{E}^c)$.

High level form

$$\mathbb{E}_{\nu}[L_t] \ge \mathrm{kl}(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu'}(\mathcal{E})) \text{ with } \mathrm{kl}(x, y) = x \ln(x/y) + (1-x) \ln((1-x)/(1-y)).$$

Start from the beginning

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbb{E}_{\nu} [\exp(-Z_t) | \mathcal{E}] \right],
\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \right],
= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right] \mathbb{P}_{\nu} (\mathbb{1}_{\mathcal{E}} = 1) + 0 \cdot \mathbb{P}_{\nu} (\mathbb{1}_{\mathcal{E}} = 0)
= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \mathbb{P}_{\nu} (\mathcal{E}).$$

Repeat the same for \mathcal{E}^c . Hence

$$\ln \frac{P_{\nu}(\mathcal{E})}{P_{\nu'}(\mathcal{E})} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}] \text{ and } \ln \frac{P_{\nu}(\mathcal{E}^c)}{P_{\nu'}(\mathcal{E}^c)} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}^c].$$

Conclude by lower bounding the terms in $\mathbb{E}_{\nu}[L_t] = \mathbb{E}_{\nu}[L_t|\mathcal{E}]\mathbb{P}_{\nu}(\mathcal{E}) + \mathbb{E}_{\nu}[L_t|\mathcal{E}^c]\mathbb{P}_{\nu}(\mathcal{E}^c)$.

High level form

$$\mathbb{E}_{\nu}[L_t] \ge \mathrm{kl}(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu'}(\mathcal{E})) \text{ with } \mathrm{kl}(x, y) = x \ln(x/y) + (1-x) \ln((1-x)/(1-y)).$$

Start from the beginning

$$\begin{split} \mathbb{P}_{\nu'}(\mathcal{E}) &= \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbb{E}_{\nu} [\exp(-Z_t) | \mathcal{E}] \right], \\ &\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \right], \\ &= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right] \mathbb{P}_{\nu} (\mathbf{1}_{\mathcal{E}} = 1) + 0 \cdot \mathbb{P}_{\nu} (\mathbf{1}_{\mathcal{E}} = 0), \\ &= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \mathbb{P}_{\nu} (\mathcal{E}). \end{split}$$

Repeat the same for \mathcal{E}^c . Hence

$$\ln \frac{P_{\nu}(\mathcal{E})}{P_{\nu'}(\mathcal{E})} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}] \text{ and } \ln \frac{P_{\nu}(\mathcal{E}^c)}{P_{\nu'}(\mathcal{E}^c)} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}^c].$$

Conclude by lower bounding the terms in $\mathbb{E}_{\nu}[L_t] = \mathbb{E}_{\nu}[L_t|\mathcal{E}]\mathbb{P}_{\nu}(\mathcal{E}) + \mathbb{E}_{\nu}[L_t|\mathcal{E}^c]\mathbb{P}_{\nu}(\mathcal{E}^c)$.

High level form

$$\mathbb{E}_{\nu}[L_t] \ge \mathrm{kl}(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu'}(\mathcal{E})) \text{ with } \mathrm{kl}(x, y) = x \ln(x/y) + (1-x) \ln((1-x)/(1-y)).$$

Start from the beginning

$$\begin{split} \mathbb{P}_{\nu'}(\mathcal{E}) &= \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbb{E}_{\nu} [\exp(-Z_t) | \mathcal{E}] \right], \\ &\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \right], \\ &= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right] \mathbb{P}_{\nu}(\mathbf{1}_{\mathcal{E}} = 1) + 0 \cdot \mathbb{P}_{\nu}(\mathbf{1}_{\mathcal{E}} = 0), \\ &= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \mathbb{P}_{\nu}(\mathcal{E}). \end{split}$$

Repeat the same for \mathcal{E}^c . Hence

$$\ln \frac{P_{\nu}(\mathcal{E})}{P_{\nu'}(\mathcal{E})} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}] \text{ and } \ln \frac{P_{\nu}(\mathcal{E}^c)}{P_{\nu'}(\mathcal{E}^c)} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}^c].$$

Conclude by lower bounding the terms in $\mathbb{E}_{\nu}[L_t] = \mathbb{E}_{\nu}[L_t|\mathcal{E}]\mathbb{P}_{\nu}(\mathcal{E}) + \mathbb{E}_{\nu}[L_t|\mathcal{E}^c]\mathbb{P}_{\nu}(\mathcal{E}^c)$.

High level form

$$\mathbb{E}_{\nu}[L_t] \ge \mathrm{kl}(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu'}(\mathcal{E})) \text{ with } \mathrm{kl}(x, y) = x \ln(x/y) + (1-x) \ln((1-x)/(1-y)).$$

Start from the beginning

$$\begin{split} \mathbb{P}_{\nu'}(\mathcal{E}) &= \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbb{E}_{\nu} [\exp(-Z_t) | \mathcal{E}] \right], \\ &\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \right], \\ &= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right] \mathbb{P}_{\nu}(\mathbf{1}_{\mathcal{E}} = 1) + 0 \cdot \mathbb{P}_{\nu}(\mathbf{1}_{\mathcal{E}} = 0), \\ &= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \mathbb{P}_{\nu}(\mathcal{E}). \end{split}$$

Repeat the same for \mathcal{E}^c . Hence

$$\ln \frac{P_{\nu}(\mathcal{E})}{P_{\nu'}(\mathcal{E})} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}] \text{ and } \ln \frac{P_{\nu}(\mathcal{E}^c)}{P_{\nu'}(\mathcal{E}^c)} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}^c].$$

Conclude by lower bounding the terms in $\mathbb{E}_{\nu}[L_t] = \mathbb{E}_{\nu}[L_t|\mathcal{E}]\mathbb{P}_{\nu}(\mathcal{E}) + \mathbb{E}_{\nu}[L_t|\mathcal{E}^c]\mathbb{P}_{\nu}(\mathcal{E}^c)$.

High level form

$$\mathbb{E}_{\nu}[L_t] \ge \text{kl}(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu'}(\mathcal{E})) \text{ with } \text{kl}(x, y) = x \ln(x/y) + (1-x) \ln((1-x)/(1-y))$$

Start from the beginning

$$\mathbb{P}_{\nu'}(\mathcal{E}) = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp(-Z_t) \right] = \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \mathbb{E}_{\nu} \left[\exp(-Z_t) | \mathcal{E} \right] \right],
\geq \mathbb{E}_{\nu} \left[\mathbf{1}_{\mathcal{E}} \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \right],
= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right] \mathbb{P}_{\nu}(\mathbf{1}_{\mathcal{E}} = 1) + 0 \cdot \mathbb{P}_{\nu}(\mathbf{1}_{\mathcal{E}} = 0),
= \exp\left(-\mathbb{E}_{\nu} [Z_t | \mathcal{E}] \right) \mathbb{P}_{\nu}(\mathcal{E}).$$

Repeat the same for \mathcal{E}^c . Hence

$$\ln \frac{P_{\nu}(\mathcal{E})}{P_{\nu'}(\mathcal{E})} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}] \text{ and } \ln \frac{P_{\nu}(\mathcal{E}^c)}{P_{\nu'}(\mathcal{E}^c)} \leq \mathbb{E}_{\nu}[Z_t | \mathcal{E}^c].$$

Conclude by lower bounding the terms in $\mathbb{E}_{\nu}[L_t] = \mathbb{E}_{\nu}[L_t|\mathcal{E}]\mathbb{P}_{\nu}(\mathcal{E}) + \mathbb{E}_{\nu}[L_t|\mathcal{E}^c]\mathbb{P}_{\nu}(\mathcal{E}^c)$.

High level form

$$\mathbb{E}_{\nu}[L_t] \ge \text{kl}(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\nu'}(\mathcal{E})) \text{ with } \text{kl}(x, y) = x \ln(x/y) + (1-x) \ln((1-x)/(1-y)).$$

Detecting a change in a stream

of data as quickly as possible

Quickest Change Detection

We now look at a different problem, called Quickest Change Detection.

- ightharpoonup Suppose you observe a stream of random variables $X_1, X_2, X_3 \dots$
 - ► The conditional density function of X_n is $f_0(X_n|X_1,\ldots,X_{n-1})$ for $n<\nu$ and $f_1(X_n|X_1,\ldots,X_{n-1})$ for $n\geq\nu$.
- $\triangleright \nu$ is an unknown change-time.
 - For $\nu=1,2,\ldots$ we let \mathbb{P}_{ν} denote the probability measure of the sequence when $\nu<\infty$, and otherwise we denote it by \mathbb{P}_{∞} .

QCD - Problem definition 8/48

Quickest Change Detection

We now look at a different problem, called Quickest Change Detection.

- ightharpoonup Suppose you observe a stream of random variables $X_1, X_2, X_3 \dots$
 - ► The conditional density function of X_n is $f_0(X_n|X_1,\ldots,X_{n-1})$ for $n<\nu$ and $f_1(X_n|X_1,\ldots,X_{n-1})$ for $n\geq\nu$.
- $\triangleright \nu$ is an unknown change-time.
 - For $\nu=1,2,\ldots$ we let \mathbb{P}_{ν} denote the probability measure of the sequence when $\nu<\infty$, and otherwise we denote it by \mathbb{P}_{∞} .

QCD - Problem definition 8/48

Quickest Change Detection (cont.)

Hypothesis Testing Problem

 H_0 : no change vs H_1 : a change happened

▶ Ideally, we want an algorithm with a certain false alarm rate (type I error), i.e.,

$$E_{\infty}[\tau] \geq \frac{1}{\alpha}$$
 with $\alpha > 0$.

Performance of a detection algorithm: worst average detection delay (WADD). Let τ be the stopping time of the algorithm (that tells you when to stop, i.e., a change was detected), then

$$\bar{E}(\tau) = \sup_{\nu > 1} \operatorname{ess\,sup} \mathbb{E}_{\nu} \left[(\tau - \nu)^{+} | X_{1}, \dots, X_{\nu-1} \right].$$

 \blacktriangleright Minimum number of samples τ needed to detect a change with a given false alarm rate?

QCD - Problem definition 9/48

In the i.i.d. case the information rate¹ is

$$(T^*)^{-1} = I^* := \lim_{n \to \infty} \frac{1}{n} \sum_{t=\nu}^{\nu+n} \ln \frac{F_1(X_t)}{F_0(X_t)} = \text{KL}(F_1, F_0).$$

To generalize non the non-i.i.d. setting, we require the following assumption

Assumption (Bound on hte information rate)

Let
$$Z_n = \ln \frac{f_1(X_n|X_1,\dots,X_{n-1})}{f_0(X_n|X_1,\dots,X_{n-1})}$$
. We assume that $\exists I^* > 0$ such that

$$\lim_{n \to \infty} \sup_{\nu \ge 1} \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \le n} \sum_{k=\nu}^{\nu+t} Z_k \ge I^* (1+\delta) n \mid X_1, \dots, X_{\nu-1} \right) = 0 \quad \forall \delta > 0.$$
 (1)

That is, there exists some I^* to which $n^{-1} \sum_{\nu \le k \le n+\nu} Z_k$ converges to in probability.

¹The characteristic time is $T^* = (I^*)^{-1}$.

In the i.i.d. case the information rate¹ is

$$(T^*)^{-1} = I^* := \lim_{n \to \infty} \frac{1}{n} \sum_{t=\nu}^{\nu+n} \ln \frac{F_1(X_t)}{F_0(X_t)} = \text{KL}(F_1, F_0).$$

To generalize non the non-i.i.d. setting, we require the following assumption.

Assumption (Bound on hte information rate)

Let $Z_n = \ln \frac{f_1(X_n|X_1,\dots,X_{n-1})}{f_0(X_n|X_1,\dots,X_{n-1})}$. We assume that $\exists I^* > 0$ such that

$$\lim_{n \to \infty} \sup_{\nu \ge 1} \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \le n} \sum_{k=\nu}^{\nu+t} Z_k \ge I^{\star} (1+\delta) n \mid X_1, \dots, X_{\nu-1} \right) = 0 \quad \forall \delta > 0.$$
 (1)

That is, there exists some I^* to which $n^{-1} \sum_{\nu \le k \le n+\nu} Z_k$ converges to in probability.

¹The characteristic time is $T^* = (I^*)^{-1}$.

The idea is to show the following for any $\delta \in (0,1)$:

$$(\mathbf{P_1}) \lim_{\alpha \to 0} \mathbb{P}_{\nu} \left(\tau - \nu \le T^*(1 - \delta) \ln(1/\alpha), \sum_{n = \nu}^{\tau} Z_n < (1 - \delta^2) \ln(1/\alpha) \mid \tau \ge \nu \right) = 0,$$

and

$$(\mathbf{P_2}) \lim_{\alpha \to 0} \mathbb{P}_{\nu} \left(\tau - \nu \le T^*(1 - \delta) \ln(1/\alpha), \sum_{n = \nu}^{\tau} Z_n \ge (1 - \delta^2) \ln(1/\alpha) \mid \tau \ge \nu \right) = 0,$$

which also implies that²

$$\liminf_{\alpha \to 0} \frac{\mathbb{E}_{\nu}[\tau - \nu | \tau \ge \nu]}{\ln(1/\alpha)} \ge \frac{1}{I^*} = T^*$$

²This would conclude the proof since $\bar{E}(\tau) \geq \mathbb{E}_{\nu}[\tau - \nu | \tau \geq \nu]$

The idea is to show the following for any $\delta \in (0,1)$:

$$(\mathbf{P_1}) \lim_{\alpha \to 0} \mathbb{P}_{\nu} \left(\tau - \nu \le T^*(1 - \delta) \ln(1/\alpha), \sum_{n = \nu}^{\tau} Z_n < (1 - \delta^2) \ln(1/\alpha) \mid \tau \ge \nu \right) = 0,$$

and

$$(\mathbf{P_2}) \lim_{\alpha \to 0} \mathbb{P}_{\nu} \left(\tau - \nu \le T^{\star} (1 - \delta) \ln(1/\alpha), \sum_{n = \nu}^{\tau} Z_n \ge (1 - \delta^2) \ln(1/\alpha) \mid \tau \ge \nu \right) = 0,$$

which also implies that²

$$\liminf_{\alpha \to 0} \frac{\mathbb{E}_{\nu}[\tau - \nu | \tau \ge \nu]}{\ln(1/\alpha)} \ge \frac{1}{I^{\star}} = T^{\star}.$$

²This would conclude the proof since $\bar{E}(\tau) \geq \mathbb{E}_{\nu}[\tau - \nu | \tau \geq \nu]$.

$$(P_2): \ \mathbb{P}_{\nu}\left(\tau - \nu \le I^*(1 - \delta) \ln(1/\alpha), \sum_{n = \nu}^{\tau} Z_n \ge (1 - \delta^2) \ln(1/\alpha) \mid \tau \ge \nu\right)$$

Let $n_{\alpha} = T^{\star}(1-\delta)\ln(1/\alpha)$ with $\delta \in (0,1)$. Then

$$\begin{split} (P_2) & \leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\tau - \nu \leq T^{\star}(1 - \delta) \ln(1/\alpha), I^{\star} \sum_{n = \nu}^{\tau} Z_n \geq I^{\star}(1 - \delta)(1 + \delta) \ln(1/\alpha) \mid \tau \geq \nu \right) \\ & \leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \leq n_{\alpha}} I^{\star} \sum_{n = \nu}^{\nu + t} Z_n \geq I^{\star}(1 - \delta)(1 + \delta) \ln(1/\alpha) \mid \tau \geq \nu \right) \\ & \leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \leq n_{\alpha}} \sum_{n = \nu}^{\nu + t} Z_n \geq I^{\star}(1 + \delta) n_{\alpha} \mid \tau \geq \nu \right) \to 0 \text{ as } \alpha \to 0 \text{ by assumption.} \end{split}$$

$$(P_2): \ \mathbb{P}_{\nu}\left(\tau - \nu \le I^*(1 - \delta) \ln(1/\alpha), \sum_{n = \nu}^{\tau} Z_n \ge (1 - \delta^2) \ln(1/\alpha) \mid \tau \ge \nu\right)$$

Let $n_{\alpha} = T^{\star}(1 - \delta) \ln(1/\alpha)$ with $\delta \in (0, 1)$. Then

$$(P_2) \leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\tau - \nu \leq T^{\star} (1 - \delta) \ln(1/\alpha), I^{\star} \sum_{n = \nu}^{\tau} Z_n \geq I^{\star} (1 - \delta) (1 + \delta) \ln(1/\alpha) \mid \tau \geq \nu \right)$$

$$\leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \leq n_{\alpha}} I^{\star} \sum_{n = \nu}^{\nu + t} Z_n \geq I^{\star} (1 - \delta) (1 + \delta) \ln(1/\alpha) \mid \tau \geq \nu \right)$$

$$\leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \leq n_{\alpha}} \sum_{n = \nu}^{\nu + t} Z_n \geq I^{\star} (1 + \delta) n_{\alpha} \mid \tau \geq \nu \right) \rightarrow 0 \text{ as } \alpha \rightarrow 0 \text{ by assumption.}$$

$$(P_2): \ \mathbb{P}_{\nu}\left(\tau - \nu \le I^{\star}(1 - \delta)\ln(1/\alpha), \sum_{n = \nu}^{\tau} Z_n \ge (1 - \delta^2)\ln(1/\alpha) \mid \tau \ge \nu\right)$$

Let $n_{\alpha} = T^{\star}(1-\delta)\ln(1/\alpha)$ with $\delta \in (0,1)$. Then

$$(P_{2}) \leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\tau - \nu \leq T^{\star}(1 - \delta) \ln(1/\alpha), I^{\star} \sum_{n = \nu}^{\tau} Z_{n} \geq I^{\star}(1 - \delta)(1 + \delta) \ln(1/\alpha) \mid \tau \geq \nu \right)$$

$$\leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \leq n_{\alpha}} I^{\star} \sum_{n = \nu}^{\nu + t} Z_{n} \geq I^{\star}(1 - \delta)(1 + \delta) \ln(1/\alpha) \mid \tau \geq \nu \right)$$

$$\leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \leq n_{\alpha}} \sum_{n = \nu}^{\nu + t} Z_{n} \geq I^{\star}(1 + \delta)n_{\alpha} \mid \tau \geq \nu \right) \rightarrow 0 \text{ as } \alpha \rightarrow 0 \text{ by assumption.}$$

$$(P_2): \ \mathbb{P}_{\nu}\left(\tau - \nu \le I^{*}(1 - \delta) \ln(1/\alpha), \sum_{n = \nu}^{\tau} Z_n \ge (1 - \delta^2) \ln(1/\alpha) \mid \tau \ge \nu\right)$$

Let $n_{\alpha} = T^{\star}(1 - \delta) \ln(1/\alpha)$ with $\delta \in (0, 1)$. Then

$$(P_2) \leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\tau - \nu \leq T^{\star}(1 - \delta) \ln(1/\alpha), I^{\star} \sum_{n = \nu}^{\tau} Z_n \geq I^{\star}(1 - \delta)(1 + \delta) \ln(1/\alpha) \mid \tau \geq \nu \right)$$

$$\leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \leq n_{\alpha}} I^{\star} \sum_{n = \nu}^{\nu + t} Z_n \geq I^{\star}(1 - \delta)(1 + \delta) \ln(1/\alpha) \mid \tau \geq \nu \right)$$

$$\leq \operatorname{ess\,sup} \mathbb{P}_{\nu} \left(\max_{t \leq n_{\alpha}} \sum_{n = \nu}^{\nu + t} Z_n \geq I^{\star}(1 + \delta)n_{\alpha} \mid \tau \geq \nu \right) \to 0 \text{ as } \alpha \to 0 \text{ by assumption.}$$

To prove $(P_1) \to 0$ as $\alpha \to 0$ we can use similar arguments as in the i.i.d. case.

Lemma (Another low-level form of the fundamental inequality)

For all $x \in \mathbb{R}, t \in \mathbb{N}$ and all event $\mathcal{E} \in \mathcal{F}_t$ we have

(Change of measure trick)
$$\mathbb{P}_{\nu}(\mathcal{E} \cap \{Z_t < x\}) \leq e^x \mathbb{P}_{\infty}(\mathcal{E}),$$

where $Z_t = \ln \frac{\mathrm{d} \mathbb{P}_{\nu}(X_1, ..., X_t)}{\mathrm{d} \mathbb{P}_{\infty}(X_1, ..., X_t)}$ is the log-likelihood ratio.

Let $t=n_{\alpha}$, and $\mathcal{E}=\{\tau-\nu\leq n_{\alpha}\}$. Then $\mathcal{E}\in\mathcal{F}_{n_{\alpha}}$. As in the i.i.d. case one can prove $\mathbb{P}_{\infty}(\mathcal{E}|\tau\geq\nu)\leq[\ln(1/\alpha)]^2\alpha$. Letting $x=(1-\delta^2)\ln(1/\alpha)$

$$(P_1) = \mathbb{P}_{\nu}(\mathcal{E} \cap \{Z_{n_{\alpha}} < (1 - \delta^2) \ln(1/\alpha)\} \mid \tau \ge \nu) \le [\ln(1/\alpha)]^2 \alpha^{\delta^2} \to 0 \text{ as } \alpha \to 0.$$

Hence, the result is proven

Quickest Change Detection: lower bound (final)

To prove $(P_1) \to 0$ as $\alpha \to 0$ we can use similar arguments as in the i.i.d. case.

Lemma (Another low-level form of the fundamental inequality)

For all $x \in \mathbb{R}, t \in \mathbb{N}$ and all event $\mathcal{E} \in \mathcal{F}_t$ we have

(Change of measure trick)
$$\mathbb{P}_{\nu}(\mathcal{E} \cap \{Z_t < x\}) \leq e^x \mathbb{P}_{\infty}(\mathcal{E}),$$

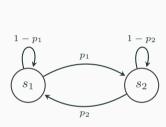
where $Z_t = \ln \frac{\mathrm{d} \mathbb{P}_{\nu}(X_1, ..., X_t)}{\mathrm{d} \mathbb{P}_{\infty}(X_1, ..., X_t)}$ is the log-likelihood ratio.

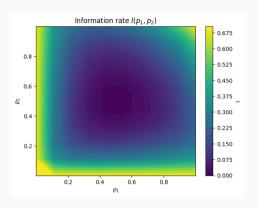
Let $t = n_{\alpha}$, and $\mathcal{E} = \{\tau - \nu \leq n_{\alpha}\}$. Then $\mathcal{E} \in \mathcal{F}_{n_{\alpha}}$. As in the i.i.d. case one can prove $\mathbb{P}_{\infty}(\mathcal{E}|\tau \geq \nu) \leq [\ln(1/\alpha)]^2 \alpha$. Letting $x = (1 - \delta^2) \ln(1/\alpha)$

$$(P_1) = \mathbb{P}_{\nu}(\mathcal{E} \cap \{Z_{n_{\alpha}} < (1 - \delta^2) \ln(1/\alpha)\} \mid \tau \ge \nu) \le [\ln(1/\alpha)]^2 \alpha^{\delta^2} \to 0 \text{ as } \alpha \to 0.$$

Hence, the result is proven.

Example with an MDP





Example with a Markov chain with 2 states. f_0 has $p_0 = p_1 = 0.5$. The quantity I^3 is $I = \mathbb{E}_{s \sim \mu}[\mathrm{KL}(P_1(s), P_2(s))]$, where μ is the stationary distribution under f_1 .

 $^{^3 \}text{As } \alpha \to 0$ one can verify that the average log-likelihood ratio under \mathbb{P}_{ν} tends to this quantity.

Best Policy Identification:

Tabular Markov Decision

Processes

Introduction '

- ► Consider an MDP $M = (S, A, P, r, \gamma)^4$.
 - ightharpoonup S is the state space (finite);
 - ightharpoonup A is the action space (finite)
 - $ightharpoonup P: S \times A \to \Delta(S)$ is the transition function.
 - $ightharpoonup r: S \times A \to [0,1]$ is the reward function.
 - $ightharpoonup \gamma \in (0,1)$ is the discount factor.
- lacktriangledown A policy $\pi:s o\Delta(A)$ maps states to distributions over actions.
- ▶ The value of a policy is $V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)}[Q^{\pi}(s,a)]$, where

$$Q^{\pi}(s,a) = \mathbb{E}^{\pi}\left[\sum_{t\geq 1} \gamma^{t-1} r(s_t, a_t) | s_0 = s, a_0 = a\right].$$

▶ We assume there exists a unique optimal policy $\pi^*(s) = \arg \max_{\pi} V^{\pi}(s), \forall s \in S$ (which is deterministic...).

⁴Setting studied in [AMP21, AMGP21]

- Assume the reward function to be deterministic and known.
- ightharpoonup As usual, define au to be the stopping time of the algorithm.
- Let $\hat{\pi}_{\tau}$ be the optimal arm estimated by the algorithm at the stopping time.
- We say that an algorithm is δ -PC (Probably Correct) if $\mathbb{P}_M(\tau < \infty, \hat{\pi}_{\tau} = \pi^*) \geq 1 \delta$ for all possible models M satisfying the uniqueness of the best arm.

- Assume the reward function to be deterministic and known.
- ightharpoonup As usual, define au to be the stopping time of the algorithm.
- Let $\hat{\pi}_{\tau}$ be the optimal arm estimated by the algorithm at the stopping time.
- We say that an algorithm is δ -PC (Probably Correct) if $\mathbb{P}_M(\tau < \infty, \hat{\pi}_\tau = \pi^*) \ge 1 \delta$ for all possible models M satisfying the uniqueness of the best arm.

- Assume the reward function to be deterministic and known.
- \blacktriangleright As usual, define τ to be the stopping time of the algorithm.
- Let $\hat{\pi}_{\tau}$ be the optimal arm estimated by the algorithm at the stopping time.
- We say that an algorithm is δ -PC (Probably Correct) if $\mathbb{P}_M(\tau < \infty, \hat{\pi}_\tau = \pi^*) \ge 1 \delta$ for all possible models M satisfying the uniqueness of the best arm.

- Assume the reward function to be deterministic and known.
- \blacktriangleright As usual, define τ to be the stopping time of the algorithm.
- Let $\hat{\pi}_{\tau}$ be the optimal arm estimated by the algorithm at the stopping time.
- ▶ We say that an algorithm is δ -PC (Probably Correct) if $\mathbb{P}_M(\tau < \infty, \hat{\pi}_\tau = \pi^*) \ge 1 \delta$ for all possible models M satisfying the uniqueness of the best arm.

- Assume the reward function to be deterministic and known.
- ightharpoonup As usual, define au to be the stopping time of the algorithm.
- Let $\hat{\pi}_{\tau}$ be the optimal arm estimated by the algorithm at the stopping time.
- ▶ We say that an algorithm is δ-PC (Probably Correct) if $\mathbb{P}_M(\tau < \infty, \hat{\pi}_\tau = \pi^*) \ge 1 \delta$ for all possible models M satisfying the uniqueness of the best arm.

The δ -PC event is $\{\hat{\pi}_{\tau} \neq \pi^*\}$. We define the set of confusing models according to this event!

$$Alt(M) := \{M' : \pi^*(M') \neq \pi^*(M), M' \text{ has a unique optimal policy}\},$$

where $\pi^*(M')$ is the optimal policy in M' (sim. $\pi^*(M)$).

Why we define the set according to the δ -PC event? Because we want to check if at the stopping time the true MDP M is confusing for the MDP M_{τ} that we estimated.

The δ -PC event is $\{\hat{\pi}_{\tau} \neq \pi^{\star}\}$. We define the set of confusing models according to this event!

$$\mathrm{Alt}(M) \coloneqq \{M' : \pi^{\star}(M') \neq \pi^{\star}(M), \ M' \ \mathrm{has\ a\ unique\ optimal\ policy}\},$$

where $\pi^*(M')$ is the optimal policy in M' (sim. $\pi^*(M)$).

Why we define the set according to the δ -PC event? Because we want to check if at the stopping time the true MDP M is confusing for the MDP M_{τ} that we estimated.

The δ -PC event is $\{\hat{\pi}_{\tau} \neq \pi^{\star}\}$. We define the set of confusing models according to this event!

$$Alt(M) := \{M' : \pi^*(M') \neq \pi^*(M), M' \text{ has a unique optimal policy}\},$$

where $\pi^*(M')$ is the optimal policy in M' (sim. $\pi^*(M)$).

Why we define the set according to the δ -PC event? Because we want to check if at the stopping time the true MDP M is confusing for the MDP M_{τ} that we estimated.

Consider then the log-likelihood ratio $Z_t = \ln \frac{d\mathbb{P}_M(S_1,A_1,R_1,S_1',...,S_t,A_t,R_t,S_t')}{d\mathbb{P}_{M'}(S_1,A_1,R_1,S_1',...,S_t,A_t,R_t,S_t')}$ between M and $M' \in \mathrm{Alt}(M)^5$. Then:

$$\mathbb{E}_{M}[Z_{\tau}] = \mathbb{E}_{M} \left[\sum_{n=1}^{\tau} \sum_{s,a} \mathbf{1}_{\{S_{n}=s, A_{n}=a\}} \ln \frac{P(S'_{n}|s,a)}{P'(S'_{n}|s,a)} \right].$$

Let $Z_{\tau}(s,a) = \sum_{n=1}^{\tau} \mathbf{1}_{\{S_n=s,A_n=a\}} \ln \frac{P(S'_n|s,a)}{P'(S'_n|s,a)}$ and $N_t(s,a)$ be the time number of times (s,a) has been selected up to time t. Then

$$\mathbb{E}_{M}[Z_{\tau}(s,a)] = \mathbb{E}_{M} \left[\sum_{n=1}^{N_{\tau}(s,a)} \underbrace{\ln \frac{P(Y_{n}|s,a)}{P'(Y_{n}|s,a)}}_{W_{n}} \right] = \mathbb{E}_{M} \left[\sum_{n=1}^{\infty} \mathbf{1}_{\{N_{\tau}(s,a) \geq n\}} W_{n} \right]$$

⁵We indicate by S'_n the state observed after taking action A_n in state S_n

Consider then the log-likelihood ratio $Z_t = \ln \frac{d\mathbb{P}_M(S_1,A_1,R_1,S_1',...,S_t,A_t,R_t,S_t')}{d\mathbb{P}_{M'}(S_1,A_1,R_1,S_1',...,S_t,A_t,R_t,S_t')}$ between M and $M' \in \mathrm{Alt}(M)^5$. Then:

$$\mathbb{E}_{M}[Z_{\tau}] = \mathbb{E}_{M} \left[\sum_{n=1}^{\tau} \sum_{s,a} \mathbf{1}_{\{S_{n}=s, A_{n}=a\}} \ln \frac{P(S'_{n}|s,a)}{P'(S'_{n}|s,a)} \right].$$

Let $Z_{\tau}(s,a) = \sum_{n=1}^{\tau} \mathbf{1}_{\{S_n=s,A_n=a\}} \ln \frac{P(S'_n|s,a)}{P'(S'_n|s,a)}$ and $N_t(s,a)$ be the time number of times (s,a) has been selected up to time t. Then

$$\mathbb{E}_{M}[Z_{\tau}(s,a)] = \mathbb{E}_{M} \left[\sum_{n=1}^{N_{\tau}(s,a)} \underbrace{\ln \frac{P(Y_{n}|s,a)}{P'(Y_{n}|s,a)}}_{W_{n}} \right] = \mathbb{E}_{M} \left[\sum_{n=1}^{\infty} \mathbf{1}_{\{N_{\tau}(s,a) \geq n\}} W_{n} \right].$$

⁵We indicate by S'_n the state observed after taking action A_n in state S_n

$$\mathbb{E}_M[Z_\tau(s,a)] = \mathbb{E}_M\left[\sum_{n=1}^\infty \mathbf{1}_{\{N_\tau(s,a) \ge n\}} W_n\right].$$

Note that the event $\{N_{\tau}(s,a) \geq n\} = \{N_{\tau}(s,a) \leq n-1\}^c \in \mathcal{F}_{n-1}$ (the filtration of the data up to and including round n-1). Since W_n is independent of \mathcal{F}_{n-1} , then we have

$$\mathbb{E}_{M}[Z_{\tau}(s,a)] = \mathbb{E}_{M}\left[\sum_{n=1}^{\infty} \mathbf{1}_{\{N_{\tau}(s,a) \geq n\}}\right] \mathrm{KL}(P(s,a), P'(s,a)),$$

$$= \sum_{n=1}^{\infty} \mathbb{P}_{M}(N_{\tau}(s,a) \geq n) \mathrm{KL}(P(s,a), P'(s,a)),$$

$$= \mathbb{E}_{M}[N_{\tau}(s,a)] \mathrm{KL}(P(s,a), P'(s,a)),$$

$$\mathbb{E}_M[Z_\tau(s,a)] = \mathbb{E}_M\left[\sum_{n=1}^\infty \mathbf{1}_{\{N_\tau(s,a) \ge n\}} W_n\right].$$

Note that the event $\{N_{\tau}(s,a) \geq n\} = \{N_{\tau}(s,a) \leq n-1\}^c \in \mathcal{F}_{n-1}$ (the filtration of the data up to and including round n-1). Since W_n is independent of \mathcal{F}_{n-1} , then we have

$$\mathbb{E}_{M}[Z_{\tau}(s,a)] = \mathbb{E}_{M}\left[\sum_{n=1}^{\infty} \mathbf{1}_{\{N_{\tau}(s,a) \geq n\}}\right] \text{KL}(P(s,a), P'(s,a)),$$

$$= \sum_{n=1}^{\infty} \mathbb{P}_{M}(N_{\tau}(s,a) \geq n) \text{KL}(P(s,a), P'(s,a)),$$

$$= \mathbb{E}_{M}[N_{\tau}(s,a)] \text{KL}(P(s,a), P'(s,a)),$$

$$\mathbb{E}_M[Z_\tau(s,a)] = \mathbb{E}_M\left[\sum_{n=1}^{\infty} \mathbf{1}_{\{N_\tau(s,a) \ge n\}} W_n\right].$$

Note that the event $\{N_{\tau}(s,a) \geq n\} = \{N_{\tau}(s,a) \leq n-1\}^c \in \mathcal{F}_{n-1}$ (the filtration of the data up to and including round n-1). Since W_n is independent of \mathcal{F}_{n-1} , then we have

$$\mathbb{E}_{M}[Z_{\tau}(s,a)] = \mathbb{E}_{M}\left[\sum_{n=1}^{\infty} \mathbf{1}_{\{N_{\tau}(s,a) \geq n\}}\right] \mathrm{KL}(P(s,a), P'(s,a)),$$

$$= \sum_{n=1}^{\infty} \mathbb{P}_{M}(N_{\tau}(s,a) \geq n) \mathrm{KL}(P(s,a), P'(s,a)),$$

$$= \mathbb{E}_{M}[N_{\tau}(s,a)] \mathrm{KL}(P(s,a), P'(s,a)),$$

$$\mathbb{E}_M[Z_\tau(s,a)] = \mathbb{E}_M\left[\sum_{n=1}^{\infty} \mathbf{1}_{\{N_\tau(s,a) \ge n\}} W_n\right].$$

Note that the event $\{N_{\tau}(s,a) \geq n\} = \{N_{\tau}(s,a) \leq n-1\}^c \in \mathcal{F}_{n-1}$ (the filtration of the data up to and including round n-1). Since W_n is independent of \mathcal{F}_{n-1} , then we have

$$\mathbb{E}_{M}[Z_{\tau}(s,a)] = \mathbb{E}_{M}\left[\sum_{n=1}^{\infty} \mathbf{1}_{\{N_{\tau}(s,a) \geq n\}}\right] \mathrm{KL}(P(s,a), P'(s,a)),$$

$$= \sum_{n=1}^{\infty} \mathbb{P}_{M}(N_{\tau}(s,a) \geq n) \mathrm{KL}(P(s,a), P'(s,a)),$$

$$= \mathbb{E}_{M}[N_{\tau}(s,a)] \mathrm{KL}(P(s,a), P'(s,a)),$$

$$\mathbb{E}_M[Z_\tau] = \sum_{s,a} \mathbb{E}_M[N_\tau(s,a)] \mathrm{KL}(P(s,a), P'(s,a)).$$

Lemma (Fundamental inequality [GMS19])

For any \mathcal{F}_{τ} -measurable r.v. $Y \in [0,1]$ we have $\mathbb{E}_{M_1}[Z_{\tau}(M_1,M_0)] \geq \operatorname{kl}(\mathbb{E}_{M_1}[Y],\mathbb{E}_{M_0}[Y])$.

We apply it and choose $Y = \mathbf{1}_{\mathcal{E}}, \mathcal{E} = \{\hat{\pi}_{\tau} = \pi^{\star}(M)\}$:

$$\mathbb{E}_M[Z_\tau] = \sum_{s,a} \mathbb{E}_M[N_\tau(s,a)] \mathrm{KL}(P(s,a), P'(s,a)) \ge \mathrm{kl}(1-\delta, \delta).$$

since $\mathbb{P}_M(\mathcal{E}) \geq 1 - \delta$ and $\mathbb{P}_{M'}(\mathcal{E}) \leq \delta$ from the fact that $\mathcal{E} \subset \{\hat{\pi}_\tau \neq \pi^*(M')\}$ under $\mathbb{P}_{M'}$

$$\mathbb{E}_M[Z_\tau] = \sum_{s,a} \mathbb{E}_M[N_\tau(s,a)] \mathrm{KL}(P(s,a), P'(s,a)).$$

Lemma (Fundamental inequality [GMS19])

For any \mathcal{F}_{τ} -measurable r.v. $Y \in [0,1]$ we have $\mathbb{E}_{M_1}[Z_{\tau}(M_1,M_0)] \geq \operatorname{kl}(\mathbb{E}_{M_1}[Y],\mathbb{E}_{M_0}[Y])$.

We apply it and choose $Y = \mathbf{1}_{\mathcal{E}}, \mathcal{E} = \{\hat{\pi}_{\tau} = \pi^{\star}(M)\}$:

$$\mathbb{E}_M[Z_\tau] = \sum_{s,a} \mathbb{E}_M[N_\tau(s,a)] \mathrm{KL}(P(s,a), P'(s,a)) \ge \mathrm{kl}(1-\delta, \delta).$$

since $\mathbb{P}_M(\mathcal{E}) \geq 1 - \delta$ and $\mathbb{P}_{M'}(\mathcal{E}) \leq \delta$ from the fact that $\mathcal{E} \subset \{\hat{\pi}_\tau \neq \pi^\star(M')\}$ under $\mathbb{P}_{M'}$.

We can take the infimum over the set of confusing models:

$$\inf_{M' \in Alt(M)} \sum_{s,a} \mathbb{E}_M[N_{\tau}(s,a)] KL(P(s,a), P'(s,a)) \ge kl(1-\delta, \delta),$$

which yields the most confusing model.

Divide and multiply the left hand-side by $\mathbb{E}_M[\tau]$ and let $\omega_{s,a} := \mathbb{E}_M[N_{\tau}(s,a)]/\mathbb{E}_M[\tau]$:

$$\mathbb{E}_{M}[\tau] \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(1 - \delta, \delta)$$

Therefore, we conclude by optimizing over $\omega_{s,a} \in \Delta(S \times A)$ (the simplex states and actions):

$$\mathbb{E}_{M}[\tau] \sup_{\omega \in \Delta(S \times A)} \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(1 - \delta, \delta)$$

We can take the infimum over the set of confusing models:

$$\inf_{M' \in Alt(M)} \sum_{s,a} \mathbb{E}_M[N_{\tau}(s,a)] KL(P(s,a), P'(s,a)) \ge kl(1-\delta, \delta),$$

which yields the most confusing model.

Divide and multiply the left hand-side by $\mathbb{E}_M[\tau]$ and let $\omega_{s,a} := \mathbb{E}_M[N_\tau(s,a)]/\mathbb{E}_M[\tau]$:

$$\mathbb{E}_{M}[\tau] \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(1 - \delta, \delta).$$

Therefore, we conclude by optimizing over $\omega_{s,a} \in \Delta(S \times A)$ (the simplex states and actions):

$$\mathbb{E}_{M}[\tau] \sup_{\omega \in \Delta(S \times A)} \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(1 - \delta, \delta).$$

We can take the infimum over the set of confusing models:

$$\inf_{M' \in Alt(M)} \sum_{s,a} \mathbb{E}_M[N_{\tau}(s,a)] KL(P(s,a), P'(s,a)) \ge kl(1-\delta, \delta),$$

which yields the most confusing model.

Divide and multiply the left hand-side by $\mathbb{E}_M[\tau]$ and let $\omega_{s,a} := \mathbb{E}_M[N_\tau(s,a)]/\mathbb{E}_M[\tau]$:

$$\mathbb{E}_{M}[\tau] \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(1 - \delta, \delta).$$

Therefore, we conclude by optimizing over $\omega_{s,a} \in \Delta(S \times A)$ (the simplex states and actions):

$$\mathbb{E}_{M}[\tau] \sup_{\omega \in \Delta(S \times A)} \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(1 - \delta, \delta).$$

$$\sup_{\omega \in \Delta(S \times A)} \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a))$$

is that it? We are missing the navigation constraints! (forward model).

For ergodic models, as $\delta \to 0$, we have that ω tends to the stationary distribution over states and actions. Hence we can take the limit and find that ⁶

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_M[\tau]}{\ln(1/\delta)} \ge T^*,$$

where

$$(T^*)^{-1} := \sup_{\omega \in \Omega(M)} \inf_{M' \in Alt(M)} \sum_{s,a} w_{s,a} KL(P(s,a), P'(s,a))$$

with
$$\Omega(M) = \{\omega \in \Delta(S \times A) : \sum_{a} \omega_{s,a} = \sum_{s',a'} P(s|s',a')\omega_{s',a'} \}$$
 (Kolmogorov equations).

⁶Find a non-asymptotic approach in the appendix.

$$\sup_{\omega \in \Delta(S \times A)} \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a))$$

is that it? We are missing the navigation constraints! (forward model).

For ergodic models, as $\delta \to 0$, we have that ω tends to the stationary distribution over states and actions. Hence we can take the limit and find that ⁶

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_M[\tau]}{\ln(1/\delta)} \ge T^*,$$

where

$$(T^*)^{-1} := \sup_{\omega \in \Omega(M)} \inf_{M' \in Alt(M)} \sum_{s,a} w_{s,a} KL(P(s,a), P'(s,a))$$

with
$$\Omega(M) = \{\omega \in \Delta(S \times A) : \sum_{a} \omega_{s,a} = \sum_{s',a'} P(s|s',a')\omega_{s',a'} \}$$
 (Kolmogorov equations).

⁶Find a non-asymptotic approach in the appendix.

$$\sup_{\omega \in \Delta(S \times A)} \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a))$$

is that it? We are missing the navigation constraints! (forward model).

For ergodic models, as $\delta \to 0$, we have that ω tends to the stationary distribution over states and actions. Hence we can take the limit and find that ⁶

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_M[\tau]}{\ln(1/\delta)} \ge T^*,$$

where

$$(T^*)^{-1} := \sup_{\omega \in \Omega(M)} \inf_{M' \in Alt(M)} \sum_{s,a} w_{s,a} KL(P(s,a), P'(s,a))$$

with
$$\Omega(M) = \{\omega \in \Delta(S \times A) : \sum_{a} \omega_{s,a} = \sum_{s',a'} P(s|s',a')\omega_{s',a'} \}$$
 (Kolmogorov equations).

⁶Find a non-asymptotic approach in the appendix.

$$\sup_{\omega \in \Delta(S \times A)} \inf_{M' \in \text{Alt}(M)} \sum_{s,a} \omega_{s,a} \text{KL}(P(s,a), P'(s,a))$$

is that it? We are missing the navigation constraints! (forward model).

For ergodic models, as $\delta \to 0$, we have that ω tends to the stationary distribution over states and actions. Hence we can take the limit and find that ⁶

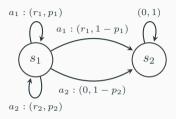
$$\liminf_{\delta \to 0} \frac{\mathbb{E}_M[\tau]}{\ln(1/\delta)} \ge T^*,$$

where

$$(T^{\star})^{-1} \coloneqq \sup_{\omega \in \Omega(M)} \inf_{M' \in \mathrm{Alt}(M)} \sum_{s,a} w_{s,a} \mathrm{KL}(P(s,a), P'(s,a))$$

with
$$\Omega(M)=\{\omega\in\Delta(S\times A):\sum_{a}\omega_{s,a}=\sum_{s',a'}P(s|s',a')\omega_{s',a'}\}$$
 (Kolmogorov equations).

⁶Find a non-asymptotic approach in the appendix.

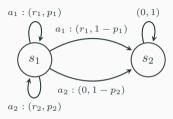


- ightharpoonup Consider the MDP in figure, where the starting state is s_1 . In each edge we indicate the action and the corresponding reward and transition probability (no action = all actions).
- ▶ The optimal Q-values in s_1 are

$$Q^*(s_1, a_1) = r_1 + \gamma p_1 V^*(s_1)$$
 and $Q^*(s_1, a_2) = p_2(r_2 + \gamma V^*(s_1))$

Therefore

$$V^*(s_1) = \max\left(\frac{r_1}{1 - \gamma p_1}, \frac{p_2 r_2}{1 - \gamma p_2}\right)$$



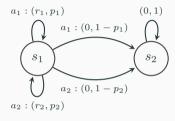
- ightharpoonup Consider the MDP in figure, where the starting state is s_1 . In each edge we indicate the action and the corresponding reward and transition probability (no action = all actions).
- ▶ The optimal Q-values in s_1 are

$$Q^{\star}(s_1, a_1) = r_1 + \gamma p_1 V^{\star}(s_1)$$
 and $Q^{\star}(s_1, a_2) = p_2(r_2 + \gamma V^{\star}(s_1))$.

Therefore

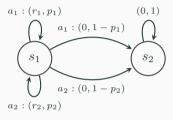
$$V^{\star}(s_1) = \max\left(\frac{r_1}{1 - \gamma p_1}, \frac{p_2 r_2}{1 - \gamma p_2}\right)$$

23/48



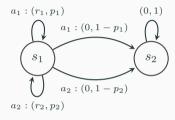
- 1. ϕ_1 : fix $r_1 = 0.7, p_1 = 0.9, r_2 = 0.3, p_2 = 1$ then a_1 is optimal and $Q^*(s_1, a_1) \approx 3.68$.
- 2. ϕ_2 : fix $r_1 = 0.7, p_1 = 0.1, r_2 = 0.3, p_2 = 0.77$ then a_1 is optimal and $Q^*(s_1, a_1) \approx 0.77$
- 3. ϕ_{avg} : take the average between these two models. Then $p_1=0.5, p_2=0.885.$ a_2 is optimal and $Q^\star(s_1,a_2)\approx 1.30$

If the first two models ϕ_1, ϕ_2 belong to Alt, then their average ϕ_{avg} does not



- 1. ϕ_1 : fix $r_1 = 0.7, p_1 = 0.9, r_2 = 0.3, p_2 = 1$ then a_1 is optimal and $Q^*(s_1, a_1) \approx 3.68$.
- 2. ϕ_2 : fix $r_1=0.7, p_1=0.1, r_2=0.3, p_2=0.77$ then a_1 is optimal and $Q^\star(s_1,a_1)\approx 0.77$.
- 3. ϕ_{avg} : take the average between these two models. Then $p_1=0.5, p_2=0.885.$ a_2 is optimal and $Q^\star(s_1,a_2)\approx 1.30$

If the first two models ϕ_1, ϕ_2 belong to Alt, then their average ϕ_{avg} does not



- 1. ϕ_1 : fix $r_1 = 0.7, p_1 = 0.9, r_2 = 0.3, p_2 = 1$ then a_1 is optimal and $Q^*(s_1, a_1) \approx 3.68$.
- 2. ϕ_2 : fix $r_1 = 0.7, p_1 = 0.1, r_2 = 0.3, p_2 = 0.77$ then a_1 is optimal and $Q^*(s_1, a_1) \approx 0.77$.
- 3. ϕ_{avg} : take the average between these two models. Then $p_1=0.5, p_2=0.885.$ a_2 is optimal and $Q^\star(s_1,a_2)\approx 1.30$

If the first two models ϕ_1, ϕ_2 belong to Alt, then their average ϕ_{avq} does not!

Regarding the non-convexity:

- ▶ If you check the original example from [AMP21] it is incorrect.
- \triangleright We used the same reward in ϕ_1, ϕ_2 because we assumed to know the reward function!
- Non-convexity seems to arise due to the probability values appearing both at the numerator and denominator $V^*(s_1) = \max\left(\frac{r_1}{1-\gamma p_1}, \frac{p_2 r_2}{1-\gamma p_2}\right)$.
- ▶ However, in simple MDPs with known rewards, where $(I \gamma P^{\pi^*})^{-1}$ has a nice structure, maybe it is possible to have convexity...
- ► We have similar comments if we know the transition function but not the rewards distributions.

Regarding the non-convexity:

- ▶ If you check the original example from [AMP21] it is incorrect.
- \blacktriangleright We used the same reward in ϕ_1, ϕ_2 because we assumed to know the reward function!.
- Non-convexity seems to arise due to the probability values appearing both at the numerator and denominator $V^*(s_1) = \max\left(\frac{r_1}{1-\gamma p_1}, \frac{p_2 r_2}{1-\gamma p_2}\right)$.
- ► However, in simple MDPs with known rewards, where $(I \gamma P^{\pi^*})^{-1}$ has a nice structure, maybe it is possible to have convexity...
- ► We have similar comments if we know the transition function but not the rewards distributions.

Regarding the non-convexity:

- ▶ If you check the original example from [AMP21] it is incorrect.
- \blacktriangleright We used the same reward in ϕ_1, ϕ_2 because we assumed to know the reward function!.
- Non-convexity seems to arise due to the probability values appearing both at the numerator and denominator $V^{\star}(s_1) = \max\left(\frac{r_1}{1-\gamma p_1}, \frac{p_2 r_2}{1-\gamma p_2}\right)$.
- ▶ However, in simple MDPs with known rewards, where $(I \gamma P^{\pi^*})^{-1}$ has a nice structure, maybe it is possible to have convexity...
- ► We have similar comments if we know the transition function but not the rewards distributions.

Regarding the non-convexity:

- ▶ If you check the original example from [AMP21] it is incorrect.
- \blacktriangleright We used the same reward in ϕ_1, ϕ_2 because we assumed to know the reward function!.
- Non-convexity seems to arise due to the probability values appearing both at the numerator and denominator $V^{\star}(s_1) = \max\left(\frac{r_1}{1-\gamma p_1}, \frac{p_2 r_2}{1-\gamma p_2}\right)$.
- ► However, in simple MDPs with known rewards, where $(I \gamma P^{\pi^*})^{-1}$ has a nice structure, maybe it is possible to have convexity...
- ► We have similar comments if we know the transition function but not the rewards distributions.

Set of confusing model is non-convex!

Regarding the non-convexity:

- ▶ If you check the original example from [AMP21] it is incorrect.
- \blacktriangleright We used the same reward in ϕ_1, ϕ_2 because we assumed to know the reward function!.
- Non-convexity seems to arise due to the probability values appearing both at the numerator and denominator $V^{\star}(s_1) = \max\left(\frac{r_1}{1-\gamma p_1}, \frac{p_2 r_2}{1-\gamma p_2}\right)$.
- ▶ However, in simple MDPs with known rewards, where $(I \gamma P^{\pi^*})^{-1}$ has a nice structure, maybe it is possible to have convexity...
- ► We have similar comments if we know the transition function but not the rewards distributions.

Non-Convexity 25/48

Convexification

Can we convexify the lower bound?

We know that

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_M[\tau]}{\ln(1/\delta)} \ge T^*$$

Define $T^{-1}(\omega) = \inf_{M' \in Alt(M)} \mathbb{E}_{(s,a) \sim \omega}[KL(P(s,a), P'(s,a))]$

Convexification

Can we find $U(\omega)$ s.t. for every ω we have that U is convex in ω and $T(\omega) \leq U(\omega)$?

Convexification

Can we convexify the lower bound?

We know that

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_M[\tau]}{\ln(1/\delta)} \ge T^*.$$

Define $T^{-1}(\omega) = \inf_{M' \in Alt(M)} \mathbb{E}_{(s,a) \sim \omega}[KL(P(s,a), P'(s,a))]$

Convexification

Can we find $U(\omega)$ s.t. for every ω we have that U is convex in ω and $T(\omega) \leq U(\omega)$

Convexification

Can we convexify the lower bound?

We know that

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_M[\tau]}{\ln(1/\delta)} \ge T^*.$$

Define $T^{-1}(\omega) = \inf_{M' \in Alt(M)} \mathbb{E}_{(s,a) \sim \omega}[KL(P(s,a), P'(s,a))].$

Convexification

Can we find $U(\omega)$ s.t. for every ω we have that U is convex in ω and $T(\omega) \leq U(\omega)$?

Convexification

Can we convexify the lower bound?

We know that

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_M[\tau]}{\ln(1/\delta)} \ge T^*.$$

Define $T^{-1}(\omega) = \inf_{M' \in \text{Alt}(M)} \mathbb{E}_{(s,a) \sim \omega}[\text{KL}(P(s,a), P'(s,a))].$

Convexification

Can we find $U(\omega)$ s.t. for every ω we have that U is convex in ω and $T(\omega) \leq U(\omega)$?

$$T^{-1}(\omega) = \inf_{M' \in \operatorname{Alt}(M)} \mathbb{E}_{(s,a) \sim \omega}[\operatorname{KL}(P(s,a),P'(s,a))].$$

We want to find $U(\omega)$ s.t. $T(\omega) \leq U(\omega)$.

- 1. Is it possible to lower bound the sum of KL divergences so that the constraint is always satisfied?
- 2. Then, can we rewrite the constraints in a way that is related to the KL terms?
- We know that the KL is roughly variance over gaps squared → try to write the constraints in terms of the sub-optimality gaps? ⁷.

⁷The sub-optimality gap is defined as $\Delta(s,a) = V^*(s) - Q^*(s,a)$

$$T^{-1}(\omega) = \inf_{M' \in \operatorname{Alt}(M)} \mathbb{E}_{(s,a) \sim \omega} [\operatorname{KL}(P(s,a), P'(s,a))].$$

We want to find $U(\omega)$ s.t. $T(\omega) \leq U(\omega)$.

- 1. Is it possible to lower bound the sum of KL divergences so that the constraint is always satisfied?
- 2. Then, can we rewrite the constraints in a way that is related to the KL terms?
- We know that the KL is roughly variance over gaps squared → try to write the constraints in terms of the sub-optimality gaps? ⁷.

⁷The sub-optimality gap is defined as $\Delta(s,a) = V^*(s) - Q^*(s,a)$

$$T^{-1}(\omega) = \inf_{M' \in \operatorname{Alt}(M)} \mathbb{E}_{(s,a) \sim \omega}[\operatorname{KL}(P(s,a), P'(s,a))].$$

We want to find $U(\omega)$ s.t. $T(\omega) \leq U(\omega)$.

- 1. Is it possible to lower bound the sum of KL divergences so that the constraint is always satisfied?
- 2. Then, can we rewrite the constraints in a way that is related to the KL terms?
- 3. We know that the KL is roughly variance over gaps squared \rightarrow try to write the constraints in terms of the sub-optimality gaps? ⁷.

⁷The sub-optimality gap is defined as $\Delta(s,a) = V^{\star}(s) - Q^{\star}(s,a)$.

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We begin by proving that $Alt(M) \subset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$ (which is more important, why?).

- ▶ By contradiction, assume $\exists M' \in Alt(M)$ s.t. $\forall s, a \neq \pi^*(s)$ we have $M' \notin Alt_{s,a}(M)$.
- ► Therefore $Q_{M'}^{\pi^*}(s,a) \leq V_{M'}^{\pi^*}(s)$ for every $s,a \neq \pi^*(s)$.
- ▶ Moreover $Q_{M'}^{\pi^*}(s, \pi^*(s)) = V_{M'}^{\pi^*}(s)$ for every s.
- ▶ Hence $Q_{M'}^{\pi^{\star}}(s,a) \leq V_{M'}^{\pi^{\star}}(s)$ for every (s,a).
- ▶ By the policy improvement theorem there does not exists any action that improves the policy, hence π^* is optimal in $M' \Rightarrow$ contradiction!

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We begin by proving that $Alt(M) \subset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$ (which is more important, why?).

- ▶ By contradiction, assume $\exists M' \in Alt(M)$ s.t. $\forall s, a \neq \pi^{\star}(s)$ we have $M' \notin Alt_{s,a}(M)$.
- ► Therefore $Q_{M'}^{\pi^*}(s,a) \leq V_{M'}^{\pi^*}(s)$ for every $s, a \neq \pi^*(s)$.
- ▶ Moreover $Q_{M'}^{\pi^*}(s, \pi^*(s)) = V_{M'}^{\pi^*}(s)$ for every s.
- $\blacktriangleright \ \ \text{Hence} \ Q_{M'}^{\pi^\star}(s,a) \leq V_{M'}^{\pi^\star}(s) \ \text{for every} \ (s,a).$
- ▶ By the policy improvement theorem there does not exists any action that improves the policy, hence π^* is optimal in $M' \Rightarrow$ contradiction!

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We begin by proving that $Alt(M) \subset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$ (which is more important, why?).

- ▶ By contradiction, assume $\exists M' \in Alt(M)$ s.t. $\forall s, a \neq \pi^{\star}(s)$ we have $M' \notin Alt_{s,a}(M)$.
- ► Therefore $Q_{M'}^{\pi^{\star}}(s,a) \leq V_{M'}^{\pi^{\star}}(s)$ for every $s,a \neq \pi^{\star}(s)$.
- ▶ Moreover $Q_{M'}^{\pi^*}(s, \pi^*(s)) = V_{M'}^{\pi^*}(s)$ for every s.
- $\blacktriangleright \ \ \text{Hence} \ Q_{M'}^{\pi^\star}(s,a) \leq V_{M'}^{\pi^\star}(s) \ \text{for every} \ (s,a).$
- ▶ By the policy improvement theorem there does not exists any action that improves the policy, hence π^* is optimal in $M' \Rightarrow$ contradiction!

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We begin by proving that $Alt(M) \subset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$ (which is more important, why?).

- ▶ By contradiction, assume $\exists M' \in Alt(M)$ s.t. $\forall s, a \neq \pi^{\star}(s)$ we have $M' \notin Alt_{s,a}(M)$.
- ► Therefore $Q_{M'}^{\pi^{\star}}(s,a) \leq V_{M'}^{\pi^{\star}}(s)$ for every $s,a \neq \pi^{\star}(s)$.
- ► Moreover $Q_{M'}^{\pi^*}(s, \pi^*(s)) = V_{M'}^{\pi^*}(s)$ for every s.
- $\blacktriangleright \ \ \text{Hence} \ Q_{M'}^{\pi^\star}(s,a) \leq V_{M'}^{\pi^\star}(s) \ \text{for every} \ (s,a).$
- ▶ By the policy improvement theorem there does not exists any action that improves the policy, hence π^* is optimal in $M' \Rightarrow$ contradiction!

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We begin by proving that $Alt(M) \subset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$ (which is more important, why?).

- ▶ By contradiction, assume $\exists M' \in Alt(M)$ s.t. $\forall s, a \neq \pi^{\star}(s)$ we have $M' \notin Alt_{s,a}(M)$.
- ► Therefore $Q_{M'}^{\pi^{\star}}(s,a) \leq V_{M'}^{\pi^{\star}}(s)$ for every $s,a \neq \pi^{\star}(s)$.
- ▶ Moreover $Q_{M'}^{\pi^{\star}}(s,\pi^{\star}(s)) = V_{M'}^{\pi^{\star}}(s)$ for every s.
- $\blacktriangleright \ \ \text{Hence} \ Q_{M'}^{\pi^\star}(s,a) \leq V_{M'}^{\pi^\star}(s) \ \text{for every} \ (s,a).$
- By the policy improvement theorem there does not exists any action that improves the policy, hence π^* is optimal in $M' \Rightarrow$ contradiction!

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We begin by proving that $Alt(M) \subset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$ (which is more important, why?).

- ▶ By contradiction, assume $\exists M' \in Alt(M)$ s.t. $\forall s, a \neq \pi^{\star}(s)$ we have $M' \notin Alt_{s,a}(M)$.
- ► Therefore $Q_{M'}^{\pi^{\star}}(s,a) \leq V_{M'}^{\pi^{\star}}(s)$ for every $s,a \neq \pi^{\star}(s)$.
- \blacktriangleright Moreover $Q_{M'}^{\pi^\star}(s,\pi^\star(s)) = V_{M'}^{\pi^\star}(s)$ for every s.
- $\blacktriangleright \ \ \text{Hence} \ Q_{M'}^{\pi^\star}(s,a) \leq V_{M'}^{\pi^\star}(s) \ \text{for every} \ (s,a).$
- ▶ By the policy improvement theorem there does not exists any action that improves the policy, hence π^* is optimal in $M' \Rightarrow$ contradiction!

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We now prove $Alt(M) \supset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$.

- Consider a generic pair $s_0, a_0 \neq \pi^*(s_0)$. By contradiction, assume $\exists M' \in \operatorname{Alt}_{s_0,a_0}(M)$ s.t. $M' \notin \operatorname{Alt}(M)$.
- ▶ Define the policy

$$\pi'(s) = \begin{cases} a_0 & s = s_0, \\ \pi^*(s) & \text{otherwise.} \end{cases}$$

Then, we have that $Q_{M'}^{\pi^*}(s_0, \pi'(s_0)) > V_{M'}^{\pi^*}(s_0)$. However, if $M' \notin \mathrm{Alt}(M)$, then π^* is optimal in M', which is not possible again by the policy improvement theorem.

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We now prove $Alt(M) \supset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$.

- Consider a generic pair $s_0, a_0 \neq \pi^*(s_0)$. By contradiction, assume $\exists M' \in \mathrm{Alt}_{s_0, a_0}(M)$ s.t. $M' \notin \mathrm{Alt}(M)$.
- Define the policy

$$\pi'(s) = \begin{cases} a_0 & s = s_0, \\ \pi^*(s) & \text{otherwise.} \end{cases}$$

Then, we have that $Q_{M'}^{\pi^*}(s_0, \pi'(s_0)) > V_{M'}^{\pi^*}(s_0)$. However, if $M' \notin \mathrm{Alt}(M)$, then π^* is optimal in M', which is not possible again by the policy improvement theorem.

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We now prove $Alt(M) \supset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$.

- Consider a generic pair $s_0, a_0 \neq \pi^*(s_0)$. By contradiction, assume $\exists M' \in \mathrm{Alt}_{s_0, a_0}(M)$ s.t. $M' \notin \mathrm{Alt}(M)$.
- ► Define the policy

$$\pi'(s) = \begin{cases} a_0 & s = s_0, \\ \pi^*(s) & \text{otherwise.} \end{cases}$$

Then, we have that $Q_{M'}^{\pi^*}(s_0, \pi'(s_0)) > V_{M'}^{\pi^*}(s_0)$. However, if $M' \notin \mathrm{Alt}(M)$, then π^* is optimal in M', which is not possible again by the policy improvement theorem.

Lemma

We have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

where π^{\star} is the optimal policy in M and $V_{M'}^{\pi^{\star}}$ is the evaluation of π^{\star} in M'.

We now prove $Alt(M) \supset \bigcup_{s,a \neq \pi^*(s)} Alt_{s,a}(M)$.

- Consider a generic pair $s_0, a_0 \neq \pi^*(s_0)$. By contradiction, assume $\exists M' \in \mathrm{Alt}_{s_0, a_0}(M)$ s.t. $M' \notin \mathrm{Alt}(M)$.
- ► Define the policy

$$\pi'(s) = \begin{cases} a_0 & s = s_0, \\ \pi^*(s) & \text{otherwise.} \end{cases}$$

► Then, we have that $Q_{M'}^{\pi^\star}(s_0,\pi'(s_0)) > V_{M'}^{\pi^\star}(s_0)$. However, if $M' \notin \mathrm{Alt}(M)$, then π^\star is convexification optimal in M', which is not possible again by the policy improvement theorem.

Using this decomposition we get

$$T^{-1}(\omega) = \inf_{M' \in Alt(M)} \mathbb{E}_{(s,a) \sim \omega} [KL(P(s,a), P'(s,a))],$$

$$= \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in Alt_{s,a}(M)} \mathbb{E}_{(s,a) \sim \omega} [KL(P(s,a), P'(s,a))],$$

$$= \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in Alt_{s,a}(M)} \omega(s,a) KL(P(s,a), P'(s,a))$$

$$+ \sum_{s'} \omega_{s',\pi^{\star}(s')} KL(P(s',\pi^{\star}(s'), P'(s',\pi^{\star}(s'))),$$

$$\geq \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in Alt_{s,a}(M)} \omega(s,a) KL(P(s,a), P'(s,a))$$

$$+ (\min_{s'} \omega_{s',\pi^{\star}(s')}) \max_{s'} KL(P(s',\pi^{\star}(s'), P'(s',\pi^{\star}(s'))),$$

where we used the fact that the constraints only involve the pairs $\{(s,a),(s',\pi^*(s'))_{s'}\}$

Convexification 30/48

Using this decomposition we get

$$T^{-1}(\omega) = \inf_{M' \in Alt(M)} \mathbb{E}_{(s,a) \sim \omega} [KL(P(s,a), P'(s,a))],$$

$$= \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in Alt_{s,a}(M)} \mathbb{E}_{(s,a) \sim \omega} [KL(P(s,a), P'(s,a))],$$

$$= \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in Alt_{s,a}(M)} \omega(s,a) KL(P(s,a), P'(s,a))$$

$$+ \sum_{s'} \omega_{s',\pi^{\star}(s')} KL(P(s',\pi^{\star}(s'), P'(s',\pi^{\star}(s'))),$$

$$\geq \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in Alt_{s,a}(M)} \omega(s,a) KL(P(s,a), P'(s,a))$$

$$+ (\min_{s'} \omega_{s',\pi^{\star}(s')}) \max_{s'} KL(P(s',\pi^{\star}(s'), P'(s',\pi^{\star}(s'))),$$

where we used the fact that the constraints only involve the pairs $\{(s,a),(s',\pi^*(s'))_{s'}\}$

Convexification 30/48

Using this decomposition we get

$$T^{-1}(\omega) = \inf_{M' \in \operatorname{Alt}(M)} \mathbb{E}_{(s,a) \sim \omega} [\operatorname{KL}(P(s,a), P'(s,a))],$$

$$= \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in \operatorname{Alt}_{s,a}(M)} \mathbb{E}_{(s,a) \sim \omega} [\operatorname{KL}(P(s,a), P'(s,a))],$$

$$= \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in \operatorname{Alt}_{s,a}(M)} \omega(s,a) \operatorname{KL}(P(s,a), P'(s,a))$$

$$+ \sum_{s'} \omega_{s',\pi^{\star}(s')} \operatorname{KL}(P(s',\pi^{\star}(s'), P'(s',\pi^{\star}(s'))),$$

$$\geq \min_{s,a \neq \pi^{\star}(s)} \inf_{M' \in \operatorname{Alt}_{s,a}(M)} \omega(s,a) \operatorname{KL}(P(s,a), P'(s,a))$$

$$+ (\min_{s'} \omega_{s',\pi^{\star}(s')}) \max_{s'} \operatorname{KL}(P(s',\pi^{\star}(s'), P'(s',\pi^{\star}(s'))),$$

where we used the fact that the constraints only involve the pairs $\{(s,a),(s',\pi^*(s'))_{s'}\}$.

Convexification 30/48

So we have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

How can we relate the KL terms to this constraint and to $\Delta(s,a)$? We know that $\Delta_{s,a} + Q^*(s,a) = V^*(s)$. Then combine the inequality with this equality to get

$$\Delta(s,a) < V^{\star}(s) - V_{M'}^{\pi^{\star}}(s) + Q_{M'}^{\pi^{\star}}(s,a) - Q^{\star}(s,a) \pm \mathbb{E}_{s' \sim P'(s,a)}[V^{\star}(s')].$$

from which follows that (we write in vector form)

$$\Delta(s, a) < \Delta V(s) + \gamma P'(s, a)^{\top} \Delta V + \Delta P(s, a)^{\top} V^{*}$$

$$< (\gamma P'(s, a) - \mathbf{1}_{s})^{\top} \Delta V + \Delta P(s, a)^{\top} V^{*}.$$

where $\Delta V = V_{M'}^{\pi^*} - V^*, \Delta P(s, a) = P'(s, a) - P(s, a)$, which are all vectors of size |S|.

Convexification 31/48

So we have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

How can we relate the KL terms to this constraint and to $\Delta(s,a)$? We know that $\Delta_{s,a}+Q^{\star}(s,a)=V^{\star}(s)$. Then combine the inequality with this equality to get

$$\Delta(s,a) < V^{\star}(s) - V^{\pi^{\star}}_{M'}(s) + Q^{\pi^{\star}}_{M'}(s,a) - Q^{\star}(s,a) \pm \mathbb{E}_{s' \sim P'(s,a)}[V^{\star}(s')].$$

from which follows that (we write in vector form)

$$\Delta(s, a) < \Delta V(s) + \gamma P'(s, a)^{\top} \Delta V + \Delta P(s, a)^{\top} V^{\star}$$

$$< (\gamma P'(s, a) - \mathbf{1}_s)^{\top} \Delta V + \Delta P(s, a)^{\top} V^{\star}.$$

where $\Delta V = V_{M'}^{\pi^{\star}} - V^{\star}, \Delta P(s,a) = P'(s,a) - P(s,a)$, which are all vectors of size |S|

Convexification 31/48

So we have that

$$\mathrm{Alt}(M) = \cup_{s,a \neq \pi^\star(s)} \mathrm{Alt}_{s,a}(M) \text{ where } \mathrm{Alt}_{s,a}(M) = \{M': Q_{M'}^{\pi^\star}(s,a) > V_{M'}^{\pi^\star}(s)\}.$$

How can we relate the KL terms to this constraint and to $\Delta(s,a)$? We know that $\Delta_{s,a}+Q^{\star}(s,a)=V^{\star}(s)$. Then combine the inequality with this equality to get

$$\Delta(s,a) < V^{\star}(s) - V^{\pi^{\star}}_{M'}(s) + Q^{\pi^{\star}}_{M'}(s,a) - Q^{\star}(s,a) \pm \mathbb{E}_{s' \sim P'(s,a)}[V^{\star}(s')].$$

from which follows that (we write in vector form)

$$\Delta(s, a) < \Delta V(s) + \gamma P'(s, a)^{\top} \Delta V + \Delta P(s, a)^{\top} V^{\star},$$

$$< (\gamma P'(s, a) - \mathbf{1}_s)^{\top} \Delta V + \Delta P(s, a)^{\top} V^{\star}.$$

where $\Delta V = V_{M'}^{\pi^*} - V^*, \Delta P(s, a) = P'(s, a) - P(s, a)$, which are all vectors of size |S|.

Convexification 31/48

$$\Delta(s, a) < (\gamma P'(s, a) - \mathbf{1}_s)^{\top} \Delta V + \Delta P(s, a)^{\top} V^{\star}.$$

We upper bound ΔV using

$$\begin{split} |\Delta V(s)| &= \gamma |\mathbb{E}_{s' \sim P'(s, \pi^{\star}(s))}[V_{M'}^{\pi^{\star}}(s')] - \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))}[V^{\star}(s')]|, \\ &\leq \gamma (|P'(s, \pi^{\star}(s))^{\top} \Delta V| + |\Delta P(s, \pi^{\star}(s))^{\top} V^{\star}|), \\ &\leq \gamma (\|\Delta V\|_{\infty} + |\Delta P(s, \pi^{\star}(s))^{\top} V^{\star}|). \end{split}$$

Therefore $\|\Delta V\|_{\infty} \leq rac{\gamma |\Delta P(s,\pi^*(s))^{ op}V^*|}{1-\gamma}$ and

$$\Delta(s, a) < \frac{\gamma |\Delta P(s, \pi^*(s))^\top V^*|}{1 - \gamma} + \Delta P(s, a)^\top V^*$$

We have rewritten the inequality in terms of the inner product $\Delta P^{\top}V^{\star}$. Can we upper bound this using the KL between P and P'?

$$\Delta(s, a) < (\gamma P'(s, a) - \mathbf{1}_s)^{\top} \Delta V + \Delta P(s, a)^{\top} V^{\star}.$$

We upper bound ΔV using

$$\begin{split} |\Delta V(s)| &= \gamma |\mathbb{E}_{s' \sim P'(s, \pi^{\star}(s))}[V_{M'}^{\pi^{\star}}(s')] - \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))}[V^{\star}(s')]|, \\ &\leq \gamma (|P'(s, \pi^{\star}(s))^{\top} \Delta V| + |\Delta P(s, \pi^{\star}(s))^{\top} V^{\star}|), \\ &\leq \gamma (\|\Delta V\|_{\infty} + |\Delta P(s, \pi^{\star}(s))^{\top} V^{\star}|). \end{split}$$

Therefore $\|\Delta V\|_{\infty} \leq \frac{\gamma |\Delta P(s,\pi^{\star}(s))^{\top}V^{\star}|}{1-\gamma}$ and

$$\Delta(s, a) < \frac{\gamma |\Delta P(s, \pi^{\star}(s))^{\top} V^{\star}|}{1 - \gamma} + \Delta P(s, a)^{\top} V^{\star}.$$

We have rewritten the inequality in terms of the inner product $\Delta P^{\top}V^{\star}$. Can we upper bound this using the KL between P and P'?

$$\Delta(s, a) < \frac{\gamma |\Delta P(s, \pi^{\star}(s))^{\top} V^{\star}|}{1 - \gamma} + \Delta P(s, a)^{\top} V^{\star}.$$

Can we upper bound the inner product using the KL between P and P'? Define the following quantities

- $\blacktriangleright \text{ Variance of } V^{\pi} \text{ in } (s,a) \colon \operatorname{Var}_{s,a}(V^{\pi}) \coloneqq \mathbb{E}_{s' \sim P(s,a)} \left[(V^{\pi}(s') \mathbb{E}_{s'' \sim P(s,a)}[V^{\pi}(s'')])^2 \right].$
- $\qquad \qquad \mathbf{Maximum \ deviation \ of} \ V^{\pi} \ \text{in} \ (s,a) \colon \ \mathrm{MD}_{s,a}(V^{\pi}) \coloneqq \left\| V^{\pi}(s') \mathbb{E}_{s'' \sim P(s,a)}[V^{\pi}(s'')] \right\|_{\infty}.$

Convexification 33/48

Lemma

Let $(s, a) \in S \times A$. For any policy π we have that

$$\begin{split} |(V^{\pi})^{\top} \Delta P(s,a)| &\leq 4 \mathrm{KL}(P(s,a),P'(s,a)) \Big[2 \mathrm{Var}_{s,a}(V^{\pi}) \\ &+ \sqrt{2 \mathrm{KL}(P(s,a),P'(s,a))} \mathrm{MD}_{s,a}(V^{\pi})^2 \Big]. \end{split}$$

where $V^{\pi} \in \mathbb{R}^{|S|}$ is the vector of values of the policy π and

$$\Delta P(s,a) = \begin{bmatrix} P'(s_1|s,a) - P(s_1|s,a) & \dots & P'(s_{|S|}|s,a) - P(s_{|S|}|s,a) \end{bmatrix}^{\top}.$$

Let
$$\mu^\pi = \mathbb{E}_{s' \sim P(\cdot \mid s,a)}[V^\pi(s')]$$
 and note that $(V^\pi)^\top \Delta P(s,a) = (V^\pi - \mu^\pi)^\top \Delta P(s,a)$.

$$|(V^{\pi} - \mu^{\pi})^{\top} \Delta P(s, a)| \le \left| \left[(\sqrt{P'(s, a)} - \sqrt{P(s, a)}) \circ (\sqrt{P'(s, a)} + \sqrt{P(s, a)}) \right]^{\top} (V^{\pi} - \mu^{\pi}) \right|$$

where \sqrt{x} is element-wise, and similarly \circ is the element-wise product.

Lemma

Let $(s, a) \in S \times A$. For any policy π we have that

$$|(V^{\pi})^{\top} \Delta P(s, a)| \le 4 \mathrm{KL}(P(s, a), P'(s, a)) \Big[2 \mathrm{Var}_{s, a}(V^{\pi}) + \sqrt{2 \mathrm{KL}(P(s, a), P'(s, a))} \mathrm{MD}_{s, a}(V^{\pi})^2 \Big].$$

where $V^{\pi} \in \mathbb{R}^{|S|}$ is the vector of values of the policy π and

$$\Delta P(s,a) = \begin{bmatrix} P'(s_1|s,a) - P(s_1|s,a) & \dots & P'(s_{|S|}|s,a) - P(s_{|S|}|s,a) \end{bmatrix}^{\top}.$$

Let $\mu^{\pi} = \mathbb{E}_{s' \sim P(\cdot \mid s, a)}[V^{\pi}(s')]$ and note that $(V^{\pi})^{\top} \Delta P(s, a) = (V^{\pi} - \mu^{\pi})^{\top} \Delta P(s, a)$.

$$|(V^{\pi} - \mu^{\pi})^{\top} \Delta P(s, a)| \le \left| [(\sqrt{P'(s, a)} - \sqrt{P(s, a)}) \circ (\sqrt{P'(s, a)} + \sqrt{P(s, a)})]^{\top} (V^{\pi} - \mu^{\pi}) \right|$$

where \sqrt{x} is element-wise, and similarly \circ is the element-wise product.

$$\begin{split} |(V^{\pi})^{\top} \Delta P(s,a)|^{2} &\leq \left| [(\sqrt{P'(s,a)} - \sqrt{P(s,a)}) \circ (\sqrt{P'(s,a)} + \sqrt{P(s,a)})]^{\top} (V^{\pi} - \mu^{\pi})) \right|^{2}, \\ &= \left| (\sqrt{P'(s,a)} - \sqrt{P(s,a)})^{\top} [(\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi}))] \right|^{2}, \\ &\leq \left\| \sqrt{P'(s,a)} - \sqrt{P(s,a)} \right\|_{2}^{2} \left\| (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right\|_{2}^{2}, \\ &\leq \left\| 4H^{2}(P(s,a), P'(s,a)) \left[|P'(s,a) + P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2} \right] \right\}, \\ &\leq 4KL(P(s,a), P'(s,a)) \left[|P'(s,a) + 2P(s,a) - P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2} \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \|P'(s,a) - P(s,a)\|_{1}MD_{s,a}(V^{\pi})^{2} \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \sqrt{2KL(P(s,a), P'(s,a))}MD_{s,a}(V^{\pi})^{2} \right]. \end{split}$$

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger's distance (add a factor 2) and used $(a+b)^2 \le 2(a^2+b^2)$; (c) $H(P,Q) \le \sqrt{\mathrm{KL}(P,Q)}$.

$$|(V^{\pi})^{\top} \Delta P(s,a)|^{2} \leq \left| [(\sqrt{P'(s,a)} - \sqrt{P(s,a)}) \circ (\sqrt{P'(s,a)} + \sqrt{P(s,a)})]^{\top} (V^{\pi} - \mu^{\pi})) \right|^{2},$$

$$= \left| (\sqrt{P'(s,a)} - \sqrt{P(s,a)})^{\top} [(\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi}))] \right|^{2},$$

$$\stackrel{(a)}{\leq} \left\| \sqrt{P'(s,a)} - \sqrt{P(s,a)} \right\|_{2}^{2} \left\| (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right\|_{2}^{2},$$

$$\stackrel{(b)}{\leq} 4H^{2}(P(s,a), P'(s,a)) \left[|P'(s,a) + P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2}) \right],$$

$$\stackrel{(c)}{\leq} 4KL(P(s,a), P'(s,a)) \left[|P'(s,a) + 2P(s,a) - P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2}) \right],$$

$$\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \|P'(s,a) - P(s,a)\|_{1}MD_{s,a}(V^{\pi})^{2} \right],$$

$$\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \sqrt{2KL(P(s,a), P'(s,a))}MD_{s,a}(V^{\pi})^{2} \right],$$

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger's distance (add a factor 2) and used $(a+b)^2 \leq 2(a^2+b^2)$; (c) $H(P,Q) \leq \sqrt{\mathrm{KL}(P,Q)}$.

$$\begin{split} |(V^{\pi})^{\top} \Delta P(s,a)|^{2} &\leq \left| \left[(\sqrt{P'(s,a)} - \sqrt{P(s,a)}) \circ (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \right]^{\top} (V^{\pi} - \mu^{\pi})) \right|^{2}, \\ &= \left| (\sqrt{P'(s,a)} - \sqrt{P(s,a)})^{\top} \left[(\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right|^{2}, \\ &\leq \left\| \sqrt{P'(s,a)} - \sqrt{P(s,a)} \right\|_{2}^{2} \left\| (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right\|_{2}^{2}, \\ &\leq \left\| 4H^{2}(P(s,a), P'(s,a)) \left[|P'(s,a) + P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2}) \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[|P'(s,a) + 2P(s,a) - P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2}) \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \|P'(s,a) - P(s,a)\|_{1}MD_{s,a}(V^{\pi})^{2} \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \sqrt{2KL(P(s,a), P'(s,a))}MD_{s,a}(V^{\pi})^{2} \right]. \end{split}$$

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger's distance (add a factor 2) and used $(a+b)^2 \le 2(a^2+b^2)$; (c) $H(P,Q) \le \sqrt{\mathrm{KL}(P,Q)}$.

$$\begin{split} |(V^{\pi})^{\top} \Delta P(s,a)|^{2} &\leq \left| \left[(\sqrt{P'(s,a)} - \sqrt{P(s,a)}) \circ (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \right]^{\top} (V^{\pi} - \mu^{\pi})) \right|^{2}, \\ &= \left| (\sqrt{P'(s,a)} - \sqrt{P(s,a)})^{\top} \left[(\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right|^{2}, \\ &\leq \left\| \sqrt{P'(s,a)} - \sqrt{P(s,a)} \right\|_{2}^{2} \left\| (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right\|_{2}^{2}, \\ &\leq \left\| 4H^{2}(P(s,a), P'(s,a)) \left[|P'(s,a) + P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2} \right] \right\}, \\ &\leq 4KL(P(s,a), P'(s,a)) \left[|P'(s,a) + 2P(s,a) - P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2} \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \|P'(s,a) - P(s,a)\|_{1}MD_{s,a}(V^{\pi})^{2} \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \sqrt{2KL(P(s,a), P'(s,a))}MD_{s,a}(V^{\pi})^{2} \right]. \end{split}$$

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger's distance (add a factor 2) and used $(a+b)^2 \leq 2(a^2+b^2)$; (c) $H(P,Q) \leq \sqrt{\mathrm{KL}(P,Q)}$.

$$\begin{split} |(V^{\pi})^{\top} \Delta P(s,a)|^{2} &\leq \left| \left[(\sqrt{P'(s,a)} - \sqrt{P(s,a)}) \circ (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \right]^{\top} (V^{\pi} - \mu^{\pi})) \right|^{2}, \\ &= \left| (\sqrt{P'(s,a)} - \sqrt{P(s,a)})^{\top} \left[(\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right|^{2}, \\ &\leq \left\| \sqrt{P'(s,a)} - \sqrt{P(s,a)} \right\|_{2}^{2} \left\| (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right\|_{2}^{2}, \\ &\leq \left\| 4H^{2}(P(s,a), P'(s,a)) \left[|P'(s,a) + P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2}) \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[|P'(s,a) + 2P(s,a) - P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2}) \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \|P'(s,a) - P(s,a)\|_{1}MD_{s,a}(V^{\pi})^{2} \right], \\ &\leq 4KL(P(s,a), P'(s,a)) \left[2Var_{s,a}(V^{\pi}) + \sqrt{2KL(P(s,a), P'(s,a))}MD_{s,a}(V^{\pi})^{2} \right]. \end{split}$$

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger's distance (add a factor 2) and used $(a+b)^2 \leq 2(a^2+b^2)$; (c) $H(P,Q) \leq \sqrt{\mathrm{KL}(P,Q)}$.

$$\begin{split} |(V^{\pi})^{\top} \Delta P(s,a)|^{2} &\leq \left| \left[(\sqrt{P'(s,a)} - \sqrt{P(s,a)}) \circ (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \right]^{\top} (V^{\pi} - \mu^{\pi})) \right|^{2}, \\ &= \left| (\sqrt{P'(s,a)} - \sqrt{P(s,a)})^{\top} \left[(\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right|^{2}, \\ &\stackrel{(a)}{\leq} \left\| \sqrt{P'(s,a)} - \sqrt{P(s,a)} \right\|_{2}^{2} \left\| (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right\|_{2}^{2}, \\ &\stackrel{(b)}{\leq} 4H^{2}(P(s,a), P'(s,a)) \left[|P'(s,a) + P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2}) \right], \\ &\stackrel{(c)}{\leq} 4\text{KL}(P(s,a), P'(s,a)) \left[|P'(s,a) + 2P(s,a) - P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2}) \right], \\ &\stackrel{\leq}{\leq} 4\text{KL}(P(s,a), P'(s,a)) \left[2\text{Var}_{s,a}(V^{\pi}) + \|P'(s,a) - P(s,a)\|_{1} \text{MD}_{s,a}(V^{\pi})^{2} \right], \\ &\leq 4\text{KL}(P(s,a), P'(s,a)) \left[2\text{Var}_{s,a}(V^{\pi}) + \sqrt{2\text{KL}(P(s,a), P'(s,a))} \text{MD}_{s,a}(V^{\pi})^{2} \right]. \end{split}$$

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger's distance (add a factor 2) and used $(a+b)^2 \le 2(a^2+b^2)$; (c) $H(P,Q) \le \sqrt{\mathrm{KL}(P,Q)}$.

$$\begin{split} |(V^{\pi})^{\top} \Delta P(s,a)|^{2} &\leq \left| \left[(\sqrt{P'(s,a)} - \sqrt{P(s,a)}) \circ (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \right]^{\top} (V^{\pi} - \mu^{\pi}) \right|^{2}, \\ &= \left| (\sqrt{P'(s,a)} - \sqrt{P(s,a)})^{\top} \left[(\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right] \right|^{2}, \\ &\stackrel{(a)}{\leq} \left\| \sqrt{P'(s,a)} - \sqrt{P(s,a)} \right\|_{2}^{2} \left\| (\sqrt{P'(s,a)} + \sqrt{P(s,a)}) \circ (V^{\pi} - \mu^{\pi})) \right\|_{2}^{2}, \\ &\stackrel{(b)}{\leq} 4H^{2}(P(s,a), P'(s,a)) \left[|P'(s,a) + P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2} \right], \\ &\stackrel{(c)}{\leq} 4\mathrm{KL}(P(s,a), P'(s,a)) \left[|P'(s,a) + 2P(s,a) - P(s,a)|^{\top} (V^{\pi} - \mu^{\pi})^{\circ 2} \right], \\ &\stackrel{\leq}{\leq} 4\mathrm{KL}(P(s,a), P'(s,a)) \left[2\mathrm{Var}_{s,a}(V^{\pi}) + \|P'(s,a) - P(s,a)\|_{1} \mathrm{MD}_{s,a}(V^{\pi})^{2} \right], \\ &\leq 4\mathrm{KL}(P(s,a), P'(s,a)) \left[2\mathrm{Var}_{s,a}(V^{\pi}) + \sqrt{2\mathrm{KL}(P(s,a), P'(s,a))} \mathrm{MD}_{s,a}(V^{\pi})^{2} \right]. \end{split}$$

(a) Cauchy-Schwarz ineq.; (b) definition of Hellinger's distance (add a factor 2) and used $(a+b)^2 \leq 2(a^2+b^2)$; (c) $H(P,Q) \leq \sqrt{\mathrm{KL}(P,Q)}$.

$$\Delta(s, a) < \frac{\gamma |\Delta P(s, \pi^*(s))^\top V^*|}{1 - \gamma} + \Delta P(s, a)^\top V^*.$$

We also want to relate each term on the r.h.s. to a fraction of $\Delta(s, a)$ to be able to bound the individual KL terms using the gaps.

Introduce $\alpha_1, \alpha_2 \geq 0$ s.t. $\alpha_1 + \alpha_2 > 1$ and let

$$\alpha_1 \Delta(s, a) = \frac{\gamma |\Delta P(s, \pi^*(s))^\top V^*|}{1 - \gamma},\tag{2}$$

$$\alpha_2 \Delta(s, a) = \Delta P(s, a)^\top V^*. \tag{3}$$

Convexification 36/48

$$\Delta(s, a) < \frac{\gamma |\Delta P(s, \pi^*(s))^\top V^*|}{1 - \gamma} + \Delta P(s, a)^\top V^*.$$

We also want to relate each term on the r.h.s. to a fraction of $\Delta(s, a)$ to be able to bound the individual KL terms using the gaps.

Introduce $\alpha_1, \alpha_2 \geq 0$ s.t. $\alpha_1 + \alpha_2 > 1$ and let

$$\alpha_1 \Delta(s, a) = \frac{\gamma |\Delta P(s, \pi^*(s))^\top V^*|}{1 - \gamma},\tag{2}$$

$$\alpha_2 \Delta(s, a) = \Delta P(s, a)^\top V^*. \tag{3}$$

Convexification 36/48

Using the lemma, for $\alpha_2\Delta(s,a)$ we find

$$\underbrace{\left(\alpha_2\Delta(s,a)\right)^2}_{=|\Delta P(s,a)^\top V^\star|^2} \le 4\mathrm{KL}(P(s,a),P'(s,a)) \left[2\mathrm{Var}_{s,a}(V^\pi) + \sqrt{2\mathrm{KL}(P(s,a),P'(s,a))}\mathrm{MD}_{s,a}(V^\pi)^2\right].$$

Use $a+b \leq 2 \max(a,b)$. Then

$$\frac{(\alpha_2 \Delta(s,a))^2}{16 \mathrm{Var}_{s,a}(V^\pi)} \leq \mathrm{KL}(P(s,a),P'(s,a)) \text{ or } \frac{(\alpha_2 \Delta(s,a))^{4/3}}{2^{7/3} \mathrm{MD}_{s,a}(V^\pi)^{4/3}} \leq \mathrm{KL}(P(s,a),P'(s,a)).$$

Hence

$$\min\left(\frac{(\alpha_2\Delta(s,a))^2}{16\text{Var}_{s,a}(V^{\pi})}, \frac{(\alpha_2\Delta(s,a))^{4/3}}{2^{7/3}\text{MD}_{s,a}(V^{\pi})^{4/3}}\right) \le \text{KL}(P(s,a), P'(s,a))$$

Convexification 37/48

Using the lemma, for $\alpha_2\Delta(s,a)$ we find

$$\underbrace{(\alpha_2 \Delta(s, a))^2}_{=|\Delta P(s, a)^\top V^\star|^2} \leq 4\mathrm{KL}(P(s, a), P'(s, a)) \left[2\mathrm{Var}_{s, a}(V^\pi) + \sqrt{2\mathrm{KL}(P(s, a), P'(s, a))} \mathrm{MD}_{s, a}(V^\pi)^2 \right].$$

Use $a + b \le 2 \max(a, b)$. Then

$$\frac{(\alpha_2 \Delta(s,a))^2}{16 \mathrm{Var}_{s,a}(V^\pi)} \leq \mathrm{KL}(P(s,a), P'(s,a)) \text{ or } \frac{(\alpha_2 \Delta(s,a))^{4/3}}{2^{7/3} \mathrm{MD}_{s,a}(V^\pi)^{4/3}} \leq \mathrm{KL}(P(s,a), P'(s,a)).$$

Hence

$$\min\left(\frac{(\alpha_2\Delta(s,a))^2}{16\text{Var}_{s,a}(V^{\pi})}, \frac{(\alpha_2\Delta(s,a))^{4/3}}{2^{7/3}\text{MD}_{s,a}(V^{\pi})^{4/3}}\right) \le \text{KL}(P(s,a), P'(s,a))$$

Convexification 37/48

Using the lemma, for $\alpha_2\Delta(s,a)$ we find

$$\underbrace{(\alpha_2 \Delta(s, a))^2}_{=|\Delta P(s, a)^\top V^\star|^2} \leq 4\mathrm{KL}(P(s, a), P'(s, a)) \left[2\mathrm{Var}_{s, a}(V^\pi) + \sqrt{2\mathrm{KL}(P(s, a), P'(s, a))} \mathrm{MD}_{s, a}(V^\pi)^2 \right].$$

Use $a + b \le 2 \max(a, b)$. Then

$$\frac{(\alpha_2\Delta(s,a))^2}{16\mathrm{Var}_{s,a}(V^\pi)} \leq \mathrm{KL}(P(s,a),P'(s,a)) \text{ or } \frac{(\alpha_2\Delta(s,a))^{4/3}}{2^{7/3}\mathrm{MD}_{s,a}(V^\pi)^{4/3}} \leq \mathrm{KL}(P(s,a),P'(s,a)).$$

Hence

$$\min\left(\frac{(\alpha_2\Delta(s,a))^2}{16\text{Var}_{s,a}(V^{\pi})}, \frac{(\alpha_2\Delta(s,a))^{4/3}}{2^{7/3}\text{MD}_{s,a}(V^{\pi})^{4/3}}\right) \le \text{KL}(P(s,a), P'(s,a)).$$

Convexification 37/48

Similarly, for
$$\alpha_1 \Delta(s,a) = \frac{\gamma |\Delta P(s,\pi^\star(s))^\top V^\star|}{1-\gamma}$$
 we get

$$\min\left(\frac{(\alpha_1 \Delta_{min}(1-\gamma))^2}{16 \max_s \operatorname{Var}_{s,\pi^{\star}(s)}(V^{\pi})}, \frac{(\alpha_1 \Delta_{min}(1-\gamma))^{4/3}}{2^{7/3} \max_s \operatorname{MD}_{s,\pi^{\star}(s)}(V^{\pi})^{4/3}}\right) \leq \max_s \operatorname{KL}(P(s,\pi^{\star}(s)), P'(s,\pi^{\star}(s))).$$

where $\Delta_{min} = \min_{s,a \neq \pi^*(s)} \Delta(s,a)$.

Convexification 38/48

$$\begin{array}{l} \text{Let } B_2(s,a,\alpha_2) = \min\left(\frac{(\alpha_2\Delta(s,a))^2}{16\text{Var}_{s,a}(V^\pi)},\frac{(\alpha_2\Delta(s,a))^{4/3}}{2^{7/3}\text{MD}_{s,a}(V^\pi)^{4/3}}\right) \text{ and } \\ B_1(\alpha_1) = \min\left(\frac{(\alpha_1\Delta_{min}(1-\gamma))^2}{16\max_s \text{Var}_{s,\pi^\star(s)}(V^\pi)},\frac{(\alpha_1\Delta_{min}(1-\gamma))^{4/3}}{2^{7/3}\max_s \text{MD}_{s,\pi^\star(s)}(V^\pi)^{4/3}}\right). \end{array}$$

Applying what we have learnt we get

$$T^{-1}(\omega) \ge \min_{s, a \ne \pi^{\star}(s)} \inf_{M' \in \text{Alt}_{s, a}(M)} \omega(s, a) \text{KL}(P(s, a), P'(s, a))$$

$$+ (\min_{s'} \omega_{s', \pi^{\star}(s')}) \max_{s'} \text{KL}(P(s', \pi^{\star}(s'), P'(s', \pi^{\star}(s'))),$$

$$\ge \min_{s, a \ne \pi^{\star}(s)} \inf_{\alpha_{1} + \alpha_{2} > 1} \omega(s, a) B_{2}(s, a, \alpha_{2}) + (\min_{s'} \omega_{s', \pi^{\star}(s')}) B_{1}(\alpha_{1}).$$

Note that for any α satisfying $\sum_i \alpha_i > 1$ we also have that $\alpha_i / \sum_i \alpha_i$ satisfies the previous KL inequalities.

Convexification 39/48

$$\begin{array}{l} \text{Let } B_2(s,a,\alpha_2) = \min\left(\frac{(\alpha_2\Delta(s,a))^2}{16\text{Var}_{s,a}(V^\pi)},\frac{(\alpha_2\Delta(s,a))^{4/3}}{2^{7/3}\text{MD}_{s,a}(V^\pi)^{4/3}}\right) \text{ and } \\ B_1(\alpha_1) = \min\left(\frac{(\alpha_1\Delta_{min}(1-\gamma))^2}{16\max_s \text{Var}_{s,\pi^\star(s)}(V^\pi)},\frac{(\alpha_1\Delta_{min}(1-\gamma))^{4/3}}{2^{7/3}\max_s \text{MD}_{s,\pi^\star(s)}(V^\pi)^{4/3}}\right). \end{array}$$

Applying what we have learnt we get

$$T^{-1}(\omega) \ge \min_{s,a \ne \pi^{\star}(s)} \inf_{M' \in \operatorname{Alt}_{s,a}(M)} \omega(s,a) \operatorname{KL}(P(s,a), P'(s,a)) + (\min_{s'} \omega_{s',\pi^{\star}(s')}) \max_{s'} \operatorname{KL}(P(s',\pi^{\star}(s'), P'(s',\pi^{\star}(s'))), \ge \min_{s,a \ne \pi^{\star}(s)} \inf_{\alpha_1 + \alpha_2 > 1} \omega(s,a) B_2(s,a,\alpha_2) + (\min_{s'} \omega_{s',\pi^{\star}(s')}) B_1(\alpha_1).$$

Note that for any α satisfying $\sum_i \alpha_i > 1$ we also have that $\alpha_i / \sum_i \alpha_i$ satisfies the previous KL inequalities.

Convexification 39/48

For α_i in the simplex, we also have $\alpha_i^2 \leq \alpha_i^{4/3}$. Thus

$$T^{-1}(\omega) \ge \min_{s,a \ne \pi^{\star}(s)} \inf_{\alpha_i \in \Delta(2)} \omega(s,a) \alpha^2 B_2(s,a) + \alpha_1^2 (\min_{s'} \omega_{s',\pi^{\star}(s')}) B_1.$$

where
$$B_2(s,a) = \min\left(\frac{\Delta(s,a)^2}{16 \mathrm{Var}_{s,a}(V^\pi)}, \frac{\Delta(s,a)^{4/3}}{2^{7/3} \mathrm{MD}_{s,a}(V^\pi)^{4/3}}\right)$$
 and $B_1 = \min\left(\frac{(\Delta_{min}(1-\gamma))^2}{16 \max_s \mathrm{Var}_{s,\pi^\star(s)}(V^\pi)}, \frac{(\Delta_{min}(1-\gamma))^{4/3}}{2^{7/3} \max_s \mathrm{MD}_{s,\pi^\star(s)}(V^\pi)^{4/3}}\right)$. Optimizing over α yields

$$T^{-1}(\omega) \ge \min_{s,a \ne \pi^*(s)} \left(\frac{1}{\omega(s,a)B_2(s,a)} + \frac{1}{\min_{s'} \omega_{s',\pi^*(s')})B_1} \right)^{-1}$$

Convexification 40/48

For α_i in the simplex, we also have $\alpha_i^2 \leq \alpha_i^{4/3}$. Thus

$$T^{-1}(\omega) \ge \min_{s,a \ne \pi^{\star}(s)} \inf_{\alpha_i \in \Delta(2)} \omega(s,a) \alpha^2 B_2(s,a) + \alpha_1^2 (\min_{s'} \omega_{s',\pi^{\star}(s')}) B_1.$$

where
$$B_2(s,a) = \min\left(\frac{\Delta(s,a)^2}{16 {\rm Var}_{s,a}(V^\pi)}, \frac{\Delta(s,a)^{4/3}}{2^{7/3} {\rm MD}_{s,a}(V^\pi)^{4/3}}\right)$$
 and $B_1 = \min\left(\frac{(\Delta_{min}(1-\gamma))^2}{16 \max_s {\rm Var}_{s,\pi^\star(s)}(V^\pi)}, \frac{(\Delta_{min}(1-\gamma))^{4/3}}{2^{7/3} \max_s {\rm MD}_{s,\pi^\star(s)}(V^\pi)^{4/3}}\right)$. Optimizing over α yields

$$T^{-1}(\omega) \ge \min_{s, a \ne \pi^{\star}(s)} \left(\frac{1}{\omega(s, a) B_2(s, a)} + \frac{1}{\min_{s'} \omega_{s', \pi^{\star}(s')}) B_1} \right)^{-1}.$$

Convexification 40/48

$$T^{-1}(\omega) \ge \min_{s, a \ne \pi^*(s)} \left(\frac{1}{\omega(s, a) B_2(s, a)} + \frac{1}{\min_{s'} \omega_{s', \pi^*(s')} B_1} \right)^{-1}.$$

Then

$$T(\omega) \le \max_{s, a \ne \pi^*(s)} \frac{H_{s,a}}{\omega(s, a)\Delta(s, a)^2} + \frac{H^*}{\min_{s'} \omega_{s', \pi^*(s')}} =: U(\omega).$$

with

$$\begin{split} H_{s,a} &= \max \left(\frac{16 \text{Var}_{s,a}(V^{\pi})}{\Delta(s,a)^2}, \frac{2^{7/3} \text{MD}_{s,a}(V^{\pi})^{4/3}}{\Delta(s,a)^{4/3}} \right), \\ H^{\star} &= \max \left(\frac{16 \max_{s} \text{Var}_{s,\pi^{\star}(s)}(V^{\pi})}{(1-\gamma)^2 \Delta_{min}^2}, \frac{2^{7/3} \max_{s} \text{MD}_{s,\pi^{\star}(s)}(V^{\pi})^{4/3}}{((\Delta_{min}(1-\gamma))^{4/3}} \right) \end{split}$$

Convexification 41/48

$$T^{-1}(\omega) \ge \min_{s, a \ne \pi^{\star}(s)} \left(\frac{1}{\omega(s, a) B_2(s, a)} + \frac{1}{\min_{s'} \omega_{s', \pi^{\star}(s')} B_1} \right)^{-1}.$$

Then

$$T(\omega) \le \max_{s,a \ne \pi^{\star}(s)} \frac{H_{s,a}}{\omega(s,a)\Delta(s,a)^2} + \frac{H^{\star}}{\min_{s'} \omega_{s',\pi^{\star}(s')}} =: \underline{U(\omega)}.$$

with

$$H_{s,a} = \max\left(\frac{16\text{Var}_{s,a}(V^{\pi})}{\Delta(s,a)^{2}}, \frac{2^{7/3}\text{MD}_{s,a}(V^{\pi})^{4/3}}{\Delta(s,a)^{4/3}}\right),$$

$$H^{\star} = \max\left(\frac{16\max_{s} \text{Var}_{s,\pi^{\star}(s)}(V^{\pi})}{(1-\gamma)^{2}\Delta_{min}^{2}}, \frac{2^{7/3}\max_{s} \text{MD}_{s,\pi^{\star}(s)}(V^{\pi})^{4/3}}{((\Delta_{min}(1-\gamma))^{4/3}}\right).$$

Convexification 41/48

Conclusions

$$T(\omega) \le \max_{s,a \ne \pi^{\star}(s)} \frac{H_{s,a}}{\omega(s,a)\Delta(s,a)^{2}} + \frac{H^{\star}}{\min_{s'} \omega_{s',\pi^{\star}(s')}} =: \underline{U(\omega)}.$$

with

$$H_{s,a} = \max\left(\frac{16\text{Var}_{s,a}(V^{\pi})}{\Delta(s,a)^{2}}, \frac{2^{7/3}\text{MD}_{s,a}(V^{\pi})^{4/3}}{\Delta(s,a)^{4/3}}\right),$$

$$H^{\star} = \max\left(\frac{16\max_{s} \text{Var}_{s,\pi^{\star}(s)}(V^{\pi})}{(1-\gamma)^{2}\Delta_{min}^{2}}, \frac{2^{7/3}\max_{s} \text{MD}_{s,\pi^{\star}(s)}(V^{\pi})^{4/3}}{((\Delta_{min}(1-\gamma))^{4/3}}\right).$$

- ▶ If we plug in a uniform distribution $\omega(s,a) = 1/(|S||A|)$ the bound scales roughly as $O\left(\frac{|S||A|}{\Delta_{min}^2(1-\gamma)^4}\right)$. The factor on γ be improved to $1/(1-\gamma)^3$ (see [AMP21]).
- ► Many open questions:
 - ► Possible to find a tighter bound? Simpler proof?
 - ▶ Possible to characterize the gap $U(\omega) T(\omega)$?
 - ightharpoonup Are there some cases where the set of confusing models is convex, and we can compute T^* exactly?

Conclusions

Best Policy Identification: Linear

Markov Decision Processes

Introduction '

Consider a linear MDP $M=(S,A,P,r,\gamma)$ s.t. to each pair (s,a) is associated a feature vector $\phi(s,a)\in\mathbb{R}^d$, satisfying $\|\phi(s,a)\|\leq 1^{-8}$.

- ightharpoonup S is the state space (finite);
- ightharpoonup A is the action space (finite)
- $P(s'|s,a) = \phi(s,a)^\top \mu(s') \text{ and } r(s,a) = \phi(s,a)^\top \theta \text{ for some } \mu: S \to \mathbb{R}^d \text{ and } \theta \in \mathbb{R}^d.$
- $ightharpoonup \gamma \in (0,1)$ is the discount factor.

⁸Setting studied in [TJP23]

Introduction 43/48

Lower bound

The steps are (almost) the same as before. In [TJP23] they find that

$$\sum_{s,a} \omega_{s,a} \mathrm{KL}(P(s,a), P'(s,a)) \ge (1-\gamma)^2 \sum_{s,a} \omega_{s,a} |\phi^\top (\theta - \theta' + \gamma(\mu - \mu')^\top V^*)|^2,$$
$$= (1-\gamma)^2 \|\theta - \theta' + \gamma(\mu - \mu')^\top V^*\|_{\Lambda(\omega)}^2,$$

where we are considering an alternative model M' with (ϕ', μ', θ') , and

$$\|x\|_{\Lambda(\omega)}^2 = \|\Lambda(\omega)^{\frac{1}{2}}x\|_2^2, \text{ with } \Lambda(\omega) = \sum_{s,a} \omega_{s,a} \phi(s,a) \phi(s,a)^\top.$$

Lower bound 44/48

Lower bound

$$\sum_{s,a} \omega_{s,a} \mathrm{KL}(P(s,a), P'(s,a)) \ge (1-\gamma)^2 \|\theta - \theta' + \gamma(\mu - \mu')^\top V^*\|_{\Lambda(\omega)}^2.$$

In [TJP23] they show that

$$\Delta_{min} \le \frac{2}{1 - \gamma} \max_{s,a} |\phi^{\top} (\theta - \theta' + \gamma(\mu - \mu')^{\top} V^{\star})|$$

combine it with the lemma

$$\inf_{x \in \mathbb{R}^d : |\phi^{\top} x| \ge \Delta} ||x||_{\Lambda}^2 = \frac{\Delta^2}{\|\phi\|_{\Lambda^{-1}}^2}.$$

to obtain

$$\|\theta - \theta' + \gamma(\mu - \mu')^{\top} V^{\star}\|_{\Lambda(\omega)}^{2} \ge \frac{(1 - \gamma)^{2} \Delta_{min}^{2}}{4 \max_{s, a} \|\phi(s, a)\|_{\Lambda(\omega)^{-1}}^{2}}.$$

Lower bound 45/48

Lower bound

Therefore

$$(T(\omega))^{-1} = \inf_{M' \in Alt(M)} \sum_{s,a} \omega_{s,a} KL(P(s,a), P'(s,a)) \ge (1 - \gamma)^2 \|\theta - \theta' + \gamma(\mu - \mu')^\top V^*\|_{\Lambda(\omega)}^2,$$

$$\ge \frac{(1 - \gamma)^4 \Delta_{min}^2}{4 \max_{s,a} \|\phi(s,a)\|_{\Lambda(\omega)^{-1}}^2}.$$

Hence, the optimal allocation is given by

$$\omega^{\star} = \underset{\omega \in \Omega(M)}{\arg \inf} \max_{s,a} \|\phi(s,a)\|_{\Lambda(\omega)^{-1}}^{2}$$

Lower bound 46/48

Conclusions

Conclusions

Still many problems left...

- ► What is the tightest convexification we can find?
- ► How can we extend the results to partially observable models?
- ► Can we simplify the proofs?
- ▶ The bounds do not take into account the parametric uncertainty during learning.
- What is the gap between the convexified bound and the true lower bound?
- ▶ How to extend to function approximators? Use ϵ -net type discretization of the state-action space $S \times A$?

Thank you for your attention!

Conclusions 47/48

References i

- Aymen Al Marjani, Aurélien Garivier, and Alexandre Proutiere, *Navigating to the best policy in markov decision processes*, Advances in Neural Information Processing Systems **34** (2021), 25852–25864.
- Aymen Al Marjani and Alexandre Proutiere, *Adaptive sampling for best policy identification in markov decision processes*, International Conference on Machine Learning, PMLR, 2021, pp. 7459–7468.
- Cheng-Der Fuh, *Sprt and cusum in hidden markov models*, The Annals of Statistics **31** (2003), no. 3, 942–977.
- Aurélien Garivier, Pierre Ménard, and Gilles Stoltz, Explore first, exploit next: The true shape of regret in bandit problems, Mathematics of Operations Research 44 (2019), no. 2, 377–399.
- Jérôme Taupin, Yassir Jedra, and Alexandre Proutiere, Best policy identification in discounted linear mdps, Sixteenth European Workshop on Reinforcement Learning, 2023.

References 48/48

Appendix

Non-asymptotic lower bound

To find a non-asymptotic lower bound with navigation constraints note that

$$\underbrace{N_{\tau}(s)}_{=\sum_{a}N_{\tau}(s,a)} = \mathbf{1}_{\{s_{1}=s\}} + \sum_{s',a'} \sum_{n=1}^{N_{\tau-1}(s',a')} \mathbf{1}_{\{W'_{n}=s\}}.$$

Therefore, using Wald's lemma again as in the lower bound proof

$$\mathbb{E}_{M}[N_{\tau}(s)] = \mathbb{P}_{M}(s_{1} = s) + \sum_{s', a'} \mathbb{E}_{M}[N_{\tau-1}(s', a')] \mathbb{P}(s|s', a').$$

Using $\mathbb{E}_M[N_{ au-1}(s,a)] \leq \mathbb{E}[N_{ au}(s,a)]$ we can write the lower bound as

$$\mathbb{E}_{M}[\tau] \ge \min_{n \in \mathbb{R}^{S \times A}} \quad \sum_{s,a} n_{s,a}$$
s.t.
$$\sum_{s,a} n_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(\delta, 1 - \delta) \quad \forall M' \in \text{Alt}(M),$$

$$\sum_{a} n_{s,a} - \sum_{s',a'} n_{s',a'} P(s|s',a') \le 1.$$

Non-asymptotic lower bound

To find a non-asymptotic lower bound with navigation constraints note that

$$\underbrace{N_{\tau}(s)}_{=\sum_{a} N_{\tau}(s,a)} = \mathbf{1}_{\{s_{1}=s\}} + \sum_{s',a'} \sum_{n=1}^{N_{\tau-1}(s',a')} \mathbf{1}_{\{W'_{n}=s\}}.$$

Therefore, using Wald's lemma again as in the lower bound proof

$$\mathbb{E}_{M}[N_{\tau}(s)] = \mathbb{P}_{M}(s_{1} = s) + \sum_{s', a'} \mathbb{E}_{M}[N_{\tau-1}(s', a')] \mathbb{P}(s|s', a').$$

Using $\mathbb{E}_M[N_{ au-1}(s,a)] \leq \mathbb{E}[N_{ au}(s,a)]$ we can write the lower bound as

$$\mathbb{E}_{M}[\tau] \ge \min_{n \in \mathbb{R}^{S \times A}} \quad \sum_{s,a} n_{s,a}$$
s.t.
$$\sum_{s,a} n_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(\delta, 1 - \delta) \quad \forall M' \in \text{Alt}(M),$$

$$\sum_{a} n_{s,a} - \sum_{s',a'} n_{s',a'} P(s|s',a') \le 1.$$

Non-asymptotic lower bound

To find a non-asymptotic lower bound with navigation constraints note that

$$\underbrace{N_{\tau}(s)}_{=\sum_{a} N_{\tau}(s,a)} = \mathbf{1}_{\{s_{1}=s\}} + \sum_{s',a'} \sum_{n=1}^{N_{\tau-1}(s',a')} \mathbf{1}_{\{W'_{n}=s\}}.$$

Therefore, using Wald's lemma again as in the lower bound proof

$$\mathbb{E}_{M}[N_{\tau}(s)] = \mathbb{P}_{M}(s_{1} = s) + \sum_{s',a'} \mathbb{E}_{M}[N_{\tau-1}(s',a')] \mathbb{P}(s|s',a').$$

Using $\mathbb{E}_M[N_{\tau-1}(s,a)] \leq \mathbb{E}[N_{\tau}(s,a)]$ we can write the lower bound as

$$\mathbb{E}_{M}[\tau] \ge \min_{n \in \mathbb{R}^{S \times A}} \quad \sum_{s,a} n_{s,a}$$
s.t.
$$\sum_{s,a} n_{s,a} \text{KL}(P(s,a), P'(s,a)) \ge \text{kl}(\delta, 1 - \delta) \quad \forall M' \in \text{Alt}(M),$$

$$\sum_{a} n_{s,a} - \sum_{s',a'} n_{s',a'} P(s|s',a') \le 1.$$