
Learning Successor States and

Reward-Free RL through the Forward-Backward Model

A Mathematical Viewpoint

Alessio Russo

March 2025

Boston University

Introduction

Motivation

https://controllable-agent.metademolab.com/ Ref. [BTO21, TO21, TRO22].
2/38

https://controllable-agent.metademolab.com/

Motivation

Today we will talk about...

1. Successor states in tabular domains

2. Successor states in continuous domains

▶ i.e., how to learn sparse rewards in continuous environments

3. The forward-backward model⇒ very important for extending Reward-Free RL to Deep RL!

3/38

Overview i

1 Introduction

2 Forward TD for Successor States: Tabular Case

3 Forward TD for Successor States: Continuous Case

4 Matrix Factorization: The Forward-Backward Representation

5 Deep Reward-Free RL

6 Conclusion

4/38

Introduction

▶ Successor states capture the expected future occupancy of each state, starting from a

given state, under a fixed policy.

▶ They generalize the notion of value functions to goal-reaching problems: each potential

goal state is treated as providing a reward upon arrival.

▶ Learning successor states can be more efficient than learning separate value functions for

each goal, especially in environments with sparse rewards.

Introduction 5/38

Introduction

▶ Successor states capture the expected future occupancy of each state, starting from a

given state, under a fixed policy.

▶ They generalize the notion of value functions to goal-reaching problems: each potential

goal state is treated as providing a reward upon arrival.

▶ Learning successor states can be more efficient than learning separate value functions for

each goal, especially in environments with sparse rewards.

Introduction 5/38

Introduction

▶ Successor states capture the expected future occupancy of each state, starting from a

given state, under a fixed policy.

▶ They generalize the notion of value functions to goal-reaching problems: each potential

goal state is treated as providing a reward upon arrival.

▶ Learning successor states can be more efficient than learning separate value functions for

each goal, especially in environments with sparse rewards.

Introduction 5/38

Markov Process and Successor States

We consider a Markov reward process with state space S (possibly infinite or continuous),

transition operator Pπ (for some policy π), and discount factor γ.

Successor state operator M

For a fixed policy π, the successor state operator M maps any starting state s to a measure

over future states, defined by:

M(s,A) =

∞∑
t=1

γt−1P(st ∈ A | s0 = s, π),

for any measurable set of states A.

In a finite state space, M can be viewed as a matrix in R|S|×|S| given by

M = (I − γPπ)−1.

Ms,s′ is the discounted expected number of visits to state s′ starting from s.
Markov Process and Successor States 6/38

Markov Process and Successor States

We consider a Markov reward process with state space S (possibly infinite or continuous),

transition operator Pπ (for some policy π), and discount factor γ.

Successor state operator M

For a fixed policy π, the successor state operator M maps any starting state s to a measure

over future states, defined by:

M(s,A) =

∞∑
t=1

γt−1P(st ∈ A | s0 = s, π),

for any measurable set of states A.

In a finite state space, M can be viewed as a matrix in R|S|×|S| given by

M = (I − γPπ)−1.

Ms,s′ is the discounted expected number of visits to state s′ starting from s.
Markov Process and Successor States 6/38

Markov Process and Successor States

We consider a Markov reward process with state space S (possibly infinite or continuous),

transition operator Pπ (for some policy π), and discount factor γ.

Successor state operator M

For a fixed policy π, the successor state operator M maps any starting state s to a measure

over future states, defined by:

M(s,A) =

∞∑
t=1

γt−1P(st ∈ A | s0 = s, π),

for any measurable set of states A.

In a finite state space, M can be viewed as a matrix in R|S|×|S| given by

M = (I − γPπ)−1.

Ms,s′ is the discounted expected number of visits to state s′ starting from s.
Markov Process and Successor States 6/38

Markov Process and Successor States: Feature Maps

Successor state operator M

M(s,A) =

∞∑
t=1

γt−1P(st ∈ A | s0 = s, π),

For any feature map ϕ : S → Rd we can define the expected discounted sum of future state

features

ψ(s) = E

∑
t≥1

γt−1ϕ(st+1)|s1 = s

 .
Hence1

ψ(s) =

∫
S

ϕ(s′)M(s,ds′)

1For tabular domains we instead have ψ(s) =
∑

s′ (I − γPπ)−1
s ϕ(s′)

Markov Process and Successor States 7/38

Markov Process and Successor States: how to learn this object?

Successor state operator M

M(s,A) =

∞∑
t=1

γt−1P(st ∈ A | s0 = s, π),

▶ How do we learn M?

▶ For continuous domains the question is tricky. We need to learn a density!

▶ Consider a dominating measure ρ over S 2. We define the density as

m(s, s′) =
M(s,ds′)

ρ(ds′)

You can think of ρ as the data distribution induced by π.

2E.g., Lebesgue, Gaussian. See also Radon-Nykodim derivative.

Markov Process and Successor States 8/38

Markov Process and Successor States: how to learn this object?

Successor state operator M

M(s,A) =

∞∑
t=1

γt−1P(st ∈ A | s0 = s, π),

▶ How do we learn M?

▶ For continuous domains the question is tricky. We need to learn a density!

▶ Consider a dominating measure ρ over S 2. We define the density as

m(s, s′) =
M(s,ds′)

ρ(ds′)

You can think of ρ as the data distribution induced by π.

2E.g., Lebesgue, Gaussian. See also Radon-Nykodim derivative.

Markov Process and Successor States 8/38

Markov Process and Successor States: how to learn this object?

Successor state operator M

M(s,A) =

∞∑
t=1

γt−1P(st ∈ A | s0 = s, π),

▶ How do we learn M?

▶ For continuous domains the question is tricky. We need to learn a density!

▶ Consider a dominating measure ρ over S 2. We define the density as

m(s, s′) =
M(s,ds′)

ρ(ds′)

You can think of ρ as the data distribution induced by π.

2E.g., Lebesgue, Gaussian. See also Radon-Nykodim derivative.

Markov Process and Successor States 8/38

Forward TD for Successor

States: Tabular Case

The Forward Bellman Equation

Theorem (Bellman Equation for Successor States)

The successor state operator M is the unique operator satisfying

M = I + γPπM,

on the state space (M is a fixed point of the Bellman operator TM := I + γPπM)

Proof Sketch.

Rearranging M = I + γPπM gives (I − γPπ)M = I. Thus M is a right-inverse of

(I − γPπ). By standard results (e.g. Neumann series), I − γPπ is invertible for 0 ≤ γ < 1,

with inverse (I − γPπ)−1. Therefore M = (I − γPπ)−1 is the unique solution.

Bellman Equation and Contraction 9/38

The Forward Bellman Equation

Theorem (Bellman Equation for Successor States)

The successor state operator M is the unique operator satisfying

M = I + γPπM,

on the state space (M is a fixed point of the Bellman operator TM := I + γPπM)

Proof Sketch.

Rearranging M = I + γPπM gives (I − γPπ)M = I. Thus M is a right-inverse of

(I − γPπ). By standard results (e.g. Neumann series), I − γPπ is invertible for 0 ≤ γ < 1,

with inverse (I − γPπ)−1. Therefore M = (I − γPπ)−1 is the unique solution.

Bellman Equation and Contraction 9/38

Bellman Operator Contractivity

Proposition (Contraction of Bellman Operator on M)

Equip the space of bounded operators on S with the sup-norm ∥ · ∥∞. The Bellman update

TM = I + γPπM is a γ-contraction in this norm3.

Proof Sketch.

For any two operators M1,M2:

∥TM1 − T (M2)∥∞ = ∥γPπ(M1 −M2)∥∞ ≤ γ∥M1 −M2∥∞.

For a learning rate η ≤ 1, repeated updates Mn+1 ← (1− η)Mn + η(I + γPπMn) will

converge to M .

3Consequently, iterated application of T converges to the unique fixed point M .

Bellman Equation and Contraction 10/38

Bellman Operator Contractivity

Proposition (Contraction of Bellman Operator on M)

Equip the space of bounded operators on S with the sup-norm ∥ · ∥∞. The Bellman update

TM = I + γPπM is a γ-contraction in this norm3.

Proof Sketch.

For any two operators M1,M2:

∥TM1 − T (M2)∥∞ = ∥γPπ(M1 −M2)∥∞ ≤ γ∥M1 −M2∥∞.

For a learning rate η ≤ 1, repeated updates Mn+1 ← (1− η)Mn + η(I + γPπMn) will

converge to M .

3Consequently, iterated application of T converges to the unique fixed point M .

Bellman Equation and Contraction 10/38

Forward TD for Successor States: Tabular Case

The Bellman equation M = I + γPπM suggests a TD-style iteration to learn M .

Definition (Tabular TD Update for M)

In a finite state space, maintain an estimate M as an |S| × |S| matrix. Upon observing a

transition s→ s′ in the Markov process, update for all s2 ∈ S:

Ms,s2 ←Ms,s2 + η δMs,s2 , where δMs,s2 := 1{s=s2} + γMs′,s2 −Ms,s2 ,

and η is the learning rate.

▶ Here 1{s=s2} serves as a ”reward” signal indicating if we have reached the target state s2.

▶ This update is equivalent to performing one-step TD for each possible goal s2
simultaneously.

Tabular TD Algorithm 11/38

Forward TD for Successor States: Tabular Case

The Bellman equation M = I + γPπM suggests a TD-style iteration to learn M .

Definition (Tabular TD Update for M)

In a finite state space, maintain an estimate M as an |S| × |S| matrix. Upon observing a

transition s→ s′ in the Markov process, update for all s2 ∈ S:

Ms,s2 ←Ms,s2 + η δMs,s2 , where δMs,s2 := 1{s=s2} + γMs′,s2 −Ms,s2 ,

and η is the learning rate.

▶ Here 1{s=s2} serves as a ”reward” signal indicating if we have reached the target state s2.

▶ This update is equivalent to performing one-step TD for each possible goal s2
simultaneously.

Tabular TD Algorithm 11/38

Forward TD for Successor States: Tabular Case

The Bellman equation M = I + γPπM suggests a TD-style iteration to learn M .

Definition (Tabular TD Update for M)

In a finite state space, maintain an estimate M as an |S| × |S| matrix. Upon observing a

transition s→ s′ in the Markov process, update for all s2 ∈ S:

Ms,s2 ←Ms,s2 + η δMs,s2 , where δMs,s2 := 1{s=s2} + γMs′,s2 −Ms,s2 ,

and η is the learning rate.

▶ Here 1{s=s2} serves as a ”reward” signal indicating if we have reached the target state s2.

▶ This update is equivalent to performing one-step TD for each possible goal s2
simultaneously.

Tabular TD Algorithm 11/38

Interpretation: State-Goal Process

The tabular TD update for M is equivalent to ordinary TD learning on an augmented

state-goal MDP.

Equivalence with goal-conditioned value functions

▶ In this interpretation, we consider a process on pairs (s, g) where g is a fixed “goal” state:

▶ Transition: (s, g) → (s′, g) with s′ ∼ Pπ(·|s).
▶ Reward: Rπ(s, g) = 1 if s = g (and 0 otherwise).

▶ Let Q(s, g) be the value (expected return) for this process.

▶ Then the tabular successor representation Ms,g learned using the TD-style approach is

exactly Q(s, g).
▶ In other words, M(s, ·) learns the value of state s for every possible goal g in parallel.

Tabular TD Algorithm 12/38

Interpretation: State-Goal Process

The tabular TD update for M is equivalent to ordinary TD learning on an augmented

state-goal MDP.

Equivalence with goal-conditioned value functions

▶ In this interpretation, we consider a process on pairs (s, g) where g is a fixed “goal” state:

▶ Transition: (s, g) → (s′, g) with s′ ∼ Pπ(·|s).
▶ Reward: Rπ(s, g) = 1 if s = g (and 0 otherwise).

▶ Let Q(s, g) be the value (expected return) for this process.

▶ Then the tabular successor representation Ms,g learned using the TD-style approach is

exactly Q(s, g).
▶ In other words, M(s, ·) learns the value of state s for every possible goal g in parallel.

Tabular TD Algorithm 12/38

Forward TD for Successor

States: Continuous Case

Representing M in continuous state spaces

In continuous or large state spaces, storing M as a full matrix is infeasible.

▶ Instead, the idea is to represent M with a parameterized function Mθ(s, g). For example,

assume:

mθ(s, s
′) ≈ M(s,ds′)

ρ(ds′)

where mθ is a parametric function (e.g. a neural network) approximating the density of

reaching s′ from s.

In continuous spaces, M has a singular part due to the term I (M = I + · · ·): for each s, the
measure M(s, ·) comprises a Dirac mass at s.

The Continuous Case 13/38

Representing M in continuous state spaces

In continuous or large state spaces, storing M as a full matrix is infeasible.

▶ Instead, the idea is to represent M with a parameterized function Mθ(s, g). For example,

assume:

mθ(s, s
′) ≈ M(s,ds′)

ρ(ds′)

where mθ is a parametric function (e.g. a neural network) approximating the density of

reaching s′ from s.

In continuous spaces, M has a singular part due to the term I (M = I + · · ·): for each s, the
measure M(s, ·) comprises a Dirac mass at s.

The Continuous Case 13/38

Representing M in continuous state spaces

In continuous or large state spaces, storing M as a full matrix is infeasible.

▶ Instead, the idea is to represent M with a parameterized function Mθ(s, g). For example,

assume:

mθ(s, s
′) ≈ M(s,ds′)

ρ(ds′)

where mθ is a parametric function (e.g. a neural network) approximating the density of

reaching s′ from s.

In continuous spaces, M has a singular part due to the term I (M = I + · · ·): for each s, the
measure M(s, ·) comprises a Dirac mass at s.

The Continuous Case 13/38

Forward TD with Function Approximation: Preamble

Goal

Find θ such that Mθ (parameterized by mθ) satisfies the Bellman equation Mθ = I+γPπMθ.

▶ We need some notion of distance. Define the norm ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)] with

f(s, s′) :=M(s,ds′)/ρ(ds′).

▶ We can do this by minimizing the Bellman error

J(θ) :=
1

2
∥Mθ − (I + γPπMθ)∥2ρ,

and performing gradient descent on J(θ).

▶ However, we know from DQN that it’s better to use a semi-stationary target. Therefore,

we instead consider

J(θ) :=
1

2
∥Mθ −M tar∥2ρ,

for some target M tar = I + γPπMθ̄ for some fixed θ̄.
Forward TD with Function Approximation 14/38

Forward TD with Function Approximation: Preamble

Goal

Find θ such that Mθ (parameterized by mθ) satisfies the Bellman equation Mθ = I+γPπMθ.

▶ We need some notion of distance. Define the norm ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)] with

f(s, s′) :=M(s,ds′)/ρ(ds′).

▶ We can do this by minimizing the Bellman error

J(θ) :=
1

2
∥Mθ − (I + γPπMθ)∥2ρ,

and performing gradient descent on J(θ).

▶ However, we know from DQN that it’s better to use a semi-stationary target. Therefore,

we instead consider

J(θ) :=
1

2
∥Mθ −M tar∥2ρ,

for some target M tar = I + γPπMθ̄ for some fixed θ̄.
Forward TD with Function Approximation 14/38

Forward TD with Function Approximation: Preamble

Goal

Find θ such that Mθ (parameterized by mθ) satisfies the Bellman equation Mθ = I+γPπMθ.

▶ We need some notion of distance. Define the norm ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)] with

f(s, s′) :=M(s,ds′)/ρ(ds′).

▶ We can do this by minimizing the Bellman error

J(θ) :=
1

2
∥Mθ − (I + γPπMθ)∥2ρ,

and performing gradient descent on J(θ).

▶ However, we know from DQN that it’s better to use a semi-stationary target. Therefore,

we instead consider

J(θ) :=
1

2
∥Mθ −M tar∥2ρ,

for some target M tar = I + γPπMθ̄ for some fixed θ̄.
Forward TD with Function Approximation 14/38

Forward TD with Function Approximation: Preamble

Goal

Find θ such that Mθ (parameterized by mθ) satisfies the Bellman equation Mθ = I+γPπMθ.

▶ We need some notion of distance. Define the norm ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)] with

f(s, s′) :=M(s,ds′)/ρ(ds′).

▶ We can do this by minimizing the Bellman error

J(θ) :=
1

2
∥Mθ − (I + γPπMθ)∥2ρ,

and performing gradient descent on J(θ).

▶ However, we know from DQN that it’s better to use a semi-stationary target. Therefore,

we instead consider

J(θ) :=
1

2
∥Mθ −M tar∥2ρ,

for some target M tar = I + γPπMθ̄ for some fixed θ̄.
Forward TD with Function Approximation 14/38

Infinitely Sparse Rewards: A Cautionary Tale

▶ In a continuous state space, the reward 1{s=g} becomes a Dirac delta, which is zero with

probability 1 for any given g.

▶ Key insight: do not rely on sampling this rare event directly. when we are at state s, we

know that the goal g = s was just achieved (for that particular g). Thus every transition

provides some learning signal.

▶ We should be able to exploit this fact to compute a gradient. Expect ∂θmθ(s, s) to appear

in the gradient update: it captures the self-transition (s to itself) which ensures the sparse

Dirac reward still contributes.

Forward TD with Function Approximation 15/38

Infinitely Sparse Rewards: A Cautionary Tale

▶ In a continuous state space, the reward 1{s=g} becomes a Dirac delta, which is zero with

probability 1 for any given g.

▶ Key insight: do not rely on sampling this rare event directly. when we are at state s, we

know that the goal g = s was just achieved (for that particular g). Thus every transition

provides some learning signal.

▶ We should be able to exploit this fact to compute a gradient. Expect ∂θmθ(s, s) to appear

in the gradient update: it captures the self-transition (s to itself) which ensures the sparse

Dirac reward still contributes.

Forward TD with Function Approximation 15/38

Infinitely Sparse Rewards: A Cautionary Tale

▶ In a continuous state space, the reward 1{s=g} becomes a Dirac delta, which is zero with

probability 1 for any given g.

▶ Key insight: do not rely on sampling this rare event directly. when we are at state s, we

know that the goal g = s was just achieved (for that particular g). Thus every transition

provides some learning signal.

▶ We should be able to exploit this fact to compute a gradient. Expect ∂θmθ(s, s) to appear

in the gradient update: it captures the self-transition (s to itself) which ensures the sparse

Dirac reward still contributes.

Forward TD with Function Approximation 15/38

Forward TD with Function Approximation

Theorem (TD Update for Successor States with Approximation)

Consider the model Mθ(s,ds
′) = mθ(s, s

′)ρ(ds′). For the loss J(θ) := 1
2∥Mθ −M tar∥2ρ, the

gradient of J(θ) is

−∂θJ(θ) = Es,s2∼ρ,s′∼Pπ(s,ds′)

∂θmθ(s, s)︸ ︷︷ ︸
Singular term

+ ∂θmθ(s, s2)(γmθ̄(s
′, s2)−mθ(s, s2))︸ ︷︷ ︸

Nxt step error


where ρ is a sampling distribution over states (e.g. stationary distribution, stationary buffer).

▶ This means we update θ by sampling a transition s→ s′ and an independent random

state s2, and then computing the above gradient term.

▶ This algorithm has the same expected update as naive parallel TD, but avoids the problem

of getting zero reward in continuous state spaces.

Forward TD with Function Approximation 16/38

Forward TD with Function Approximation: Proof [1/3]

We now look at the proof of the theorem. Recall that ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)2] with

f(s, s′) :=M(s,ds′)/ρ(ds′). Also let ⟨M1,M2⟩ρ = Es,s′∼ρ[f1(s, s
′)f2(s, s

′)].

▶ Recall that

J(θ) :=
1

2
∥Mθ −M tar∥2ρ and M tar = I + γPπMθ̄

for some fixed θ̄.

▶ Mθ is absolutely continuous with respect to ρ while Mθ̄, is not, due to the I term. This

makes the norm infinite, but the gradient is still well defined.

▶ To see this, note that

J(θ) =
1

2
∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ +
1

2
∥M tar∥2ρ.

J(θ) has the same minima as J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ! Namely, they differ by an

”infinite” constant.

Forward TD with Function Approximation 17/38

Forward TD with Function Approximation: Proof [1/3]

We now look at the proof of the theorem. Recall that ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)2] with

f(s, s′) :=M(s,ds′)/ρ(ds′). Also let ⟨M1,M2⟩ρ = Es,s′∼ρ[f1(s, s
′)f2(s, s

′)].

▶ Recall that

J(θ) :=
1

2
∥Mθ −M tar∥2ρ and M tar = I + γPπMθ̄

for some fixed θ̄.

▶ Mθ is absolutely continuous with respect to ρ while Mθ̄, is not, due to the I term. This

makes the norm infinite, but the gradient is still well defined.

▶ To see this, note that

J(θ) =
1

2
∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ +
1

2
∥M tar∥2ρ.

J(θ) has the same minima as J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ! Namely, they differ by an

”infinite” constant.

Forward TD with Function Approximation 17/38

Forward TD with Function Approximation: Proof [1/3]

We now look at the proof of the theorem. Recall that ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)2] with

f(s, s′) :=M(s,ds′)/ρ(ds′). Also let ⟨M1,M2⟩ρ = Es,s′∼ρ[f1(s, s
′)f2(s, s

′)].

▶ Recall that

J(θ) :=
1

2
∥Mθ −M tar∥2ρ and M tar = I + γPπMθ̄

for some fixed θ̄.

▶ Mθ is absolutely continuous with respect to ρ while Mθ̄, is not, due to the I term. This

makes the norm infinite, but the gradient is still well defined.

▶ To see this, note that

J(θ) =
1

2
∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ +
1

2
∥M tar∥2ρ.

J(θ) has the same minima as J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ! Namely, they differ by an

”infinite” constant.

Forward TD with Function Approximation 17/38

Forward TD with Function Approximation: Proof [1/3]

We now look at the proof of the theorem. Recall that ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)2] with

f(s, s′) :=M(s,ds′)/ρ(ds′). Also let ⟨M1,M2⟩ρ = Es,s′∼ρ[f1(s, s
′)f2(s, s

′)].

▶ Recall that

J(θ) :=
1

2
∥Mθ −M tar∥2ρ and M tar = I + γPπMθ̄

for some fixed θ̄.

▶ Mθ is absolutely continuous with respect to ρ while Mθ̄, is not, due to the I term. This

makes the norm infinite, but the gradient is still well defined.

▶ To see this, note that

J(θ) =
1

2
∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ +
1

2
∥M tar∥2ρ.

J(θ) has the same minima as J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ! Namely, they differ by an

”infinite” constant.

Forward TD with Function Approximation 17/38

Forward TD with Function Approximation: Proof [1/3]

We now look at the proof of the theorem. Recall that ∥M∥2ρ = Es,s′∼ρ[f(s, s
′)2] with

f(s, s′) :=M(s,ds′)/ρ(ds′). Also let ⟨M1,M2⟩ρ = Es,s′∼ρ[f1(s, s
′)f2(s, s

′)].

▶ Recall that

J(θ) :=
1

2
∥Mθ −M tar∥2ρ and M tar = I + γPπMθ̄

for some fixed θ̄.

▶ Mθ is absolutely continuous with respect to ρ while Mθ̄, is not, due to the I term. This

makes the norm infinite, but the gradient is still well defined.

▶ To see this, note that

J(θ) =
1

2
∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ +
1

2
∥M tar∥2ρ.

J(θ) has the same minima as J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ! Namely, they differ by an

”infinite” constant.

Forward TD with Function Approximation 17/38

Forward TD with Function Approximation: Proof [2/3]

We work with J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ.

Next, recall that Mθ(s,ds2) = mθ(s, s2)ρ(ds2), while M
tar is

M tar(s,ds2) = δs(ds2) + γ Pπ
s Mθ̄(·,ds2)︸ ︷︷ ︸

P is like an integral operator: next state transition

,

= δs(ds2) + γ

∫
s′
Mθ̄(s

′,ds2)P
π(ds′|s),

= δs(ds2) + γ

∫
s′
mθ̄(s

′, s2)ρ(ds2)P
π(ds′|s).

Therefore

⟨Mθ,M
tar⟩ρ =

∫
s,s2

Mθ(s,ds2)

ρ(ds2)

M tar(s,ds2)

ρ(ds2)
ρ(ds)ρ(ds2) =

∫
s,s2

mθ(s, s2)M
tar(s,ds2)ρ(ds),

=

∫
s

mθ(s, s)ρ(ds) + γ

∫
s,s2,s′

mθ(s, s2)mθ̄(s
′, s2)ρ(ds2)P

π(ds′|s)ρ(ds).

Forward TD with Function Approximation 18/38

Forward TD with Function Approximation: Proof [2/3]

We work with J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ.

Next, recall that Mθ(s,ds2) = mθ(s, s2)ρ(ds2), while M
tar is

M tar(s,ds2) = δs(ds2) + γ Pπ
s Mθ̄(·,ds2)︸ ︷︷ ︸

P is like an integral operator: next state transition

,

= δs(ds2) + γ

∫
s′
Mθ̄(s

′,ds2)P
π(ds′|s),

= δs(ds2) + γ

∫
s′
mθ̄(s

′, s2)ρ(ds2)P
π(ds′|s).

Therefore

⟨Mθ,M
tar⟩ρ =

∫
s,s2

Mθ(s,ds2)

ρ(ds2)

M tar(s,ds2)

ρ(ds2)
ρ(ds)ρ(ds2) =

∫
s,s2

mθ(s, s2)M
tar(s,ds2)ρ(ds),

=

∫
s

mθ(s, s)ρ(ds) + γ

∫
s,s2,s′

mθ(s, s2)mθ̄(s
′, s2)ρ(ds2)P

π(ds′|s)ρ(ds).

Forward TD with Function Approximation 18/38

Forward TD with Function Approximation: Proof [2/3]

We work with J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ.

Next, recall that Mθ(s,ds2) = mθ(s, s2)ρ(ds2), while M
tar is

M tar(s,ds2) = δs(ds2) + γ Pπ
s Mθ̄(·,ds2)︸ ︷︷ ︸

P is like an integral operator: next state transition

,

= δs(ds2) + γ

∫
s′
Mθ̄(s

′,ds2)P
π(ds′|s),

= δs(ds2) + γ

∫
s′
mθ̄(s

′, s2)ρ(ds2)P
π(ds′|s).

Therefore

⟨Mθ,M
tar⟩ρ =

∫
s,s2

Mθ(s,ds2)

ρ(ds2)

M tar(s,ds2)

ρ(ds2)
ρ(ds)ρ(ds2) =

∫
s,s2

mθ(s, s2)M
tar(s,ds2)ρ(ds),

=

∫
s

mθ(s, s)ρ(ds) + γ

∫
s,s2,s′

mθ(s, s2)mθ̄(s
′, s2)ρ(ds2)P

π(ds′|s)ρ(ds).

Forward TD with Function Approximation 18/38

Forward TD with Function Approximation: Proof [2/3]

We work with J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ.

Next, recall that Mθ(s,ds2) = mθ(s, s2)ρ(ds2), while M
tar is

M tar(s,ds2) = δs(ds2) + γ Pπ
s Mθ̄(·,ds2)︸ ︷︷ ︸

P is like an integral operator: next state transition

,

= δs(ds2) + γ

∫
s′
Mθ̄(s

′,ds2)P
π(ds′|s),

= δs(ds2) + γ

∫
s′
mθ̄(s

′, s2)ρ(ds2)P
π(ds′|s).

Therefore

⟨Mθ,M
tar⟩ρ =

∫
s,s2

Mθ(s,ds2)

ρ(ds2)

M tar(s,ds2)

ρ(ds2)
ρ(ds)ρ(ds2) =

∫
s,s2

mθ(s, s2)M
tar(s,ds2)ρ(ds),

=

∫
s

mθ(s, s)ρ(ds) + γ

∫
s,s2,s′

mθ(s, s2)mθ̄(s
′, s2)ρ(ds2)P

π(ds′|s)ρ(ds).

Forward TD with Function Approximation 18/38

Forward TD with Function Approximation: Proof [2/3]

We work with J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ.

Next, recall that Mθ(s,ds2) = mθ(s, s2)ρ(ds2), while M
tar is

M tar(s,ds2) = δs(ds2) + γ Pπ
s Mθ̄(·,ds2)︸ ︷︷ ︸

P is like an integral operator: next state transition

,

= δs(ds2) + γ

∫
s′
Mθ̄(s

′,ds2)P
π(ds′|s),

= δs(ds2) + γ

∫
s′
mθ̄(s

′, s2)ρ(ds2)P
π(ds′|s).

Therefore

⟨Mθ,M
tar⟩ρ =

∫
s,s2

Mθ(s,ds2)

ρ(ds2)

M tar(s,ds2)

ρ(ds2)
ρ(ds)ρ(ds2) =

∫
s,s2

mθ(s, s2)M
tar(s,ds2)ρ(ds),

=

∫
s

mθ(s, s)ρ(ds) + γ

∫
s,s2,s′

mθ(s, s2)mθ̄(s
′, s2)ρ(ds2)P

π(ds′|s)ρ(ds).

Forward TD with Function Approximation 18/38

Forward TD with Function Approximation: Proof [3/3]

1. J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ
2. ⟨Mθ,M

tar⟩ρ =
∫
s
mθ(s, s)ρ(ds) + γ

∫
s,s2,s′

mθ(s, s2)mθ̄(s
′, s2)ρ(ds2)P

π(ds′|s)ρ(ds).

We also have

∥Mθ∥2ρ =

∫
s,s2

mθ(s, s2)
2ρ(ds)ρ(ds2) = Es,s2∼ρ[mθ(s, s2)

2]

Hence

∂θJ
′(θ) = Es,s2∼ρ,s′∼Pπ(·|s) [mθ(s, s2)∂θmθ(s, s2)− ∂θmθ(s, s)− γ∂θmθ(s, s2)mθ̄(s

′, s2)] ,

= −Es∼ρ [∂θmθ(s, s)] + Es,s2∼ρ,s′∼Pπ(·|s) [∂θmθ(s, s2) (mθ(s, s2)− γmθ̄(s
′, s2))] .

Forward TD with Function Approximation 19/38

Forward TD with Function Approximation: Proof [3/3]

1. J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ
2. ⟨Mθ,M

tar⟩ρ =
∫
s
mθ(s, s)ρ(ds) + γ

∫
s,s2,s′

mθ(s, s2)mθ̄(s
′, s2)ρ(ds2)P

π(ds′|s)ρ(ds).

We also have

∥Mθ∥2ρ =

∫
s,s2

mθ(s, s2)
2ρ(ds)ρ(ds2) = Es,s2∼ρ[mθ(s, s2)

2]

Hence

∂θJ
′(θ) = Es,s2∼ρ,s′∼Pπ(·|s) [mθ(s, s2)∂θmθ(s, s2)− ∂θmθ(s, s)− γ∂θmθ(s, s2)mθ̄(s

′, s2)] ,

= −Es∼ρ [∂θmθ(s, s)] + Es,s2∼ρ,s′∼Pπ(·|s) [∂θmθ(s, s2) (mθ(s, s2)− γmθ̄(s
′, s2))] .

Forward TD with Function Approximation 19/38

Forward TD with Function Approximation: Proof [3/3]

1. J ′(θ) = 1
2∥Mθ∥2ρ − ⟨Mθ,M

tar⟩ρ
2. ⟨Mθ,M

tar⟩ρ =
∫
s
mθ(s, s)ρ(ds) + γ

∫
s,s2,s′

mθ(s, s2)mθ̄(s
′, s2)ρ(ds2)P

π(ds′|s)ρ(ds).

We also have

∥Mθ∥2ρ =

∫
s,s2

mθ(s, s2)
2ρ(ds)ρ(ds2) = Es,s2∼ρ[mθ(s, s2)

2]

Hence

∂θJ
′(θ) = Es,s2∼ρ,s′∼Pπ(·|s) [mθ(s, s2)∂θmθ(s, s2)− ∂θmθ(s, s)− γ∂θmθ(s, s2)mθ̄(s

′, s2)] ,

= −Es∼ρ [∂θmθ(s, s)] + Es,s2∼ρ,s′∼Pπ(·|s) [∂θmθ(s, s2) (mθ(s, s2)− γmθ̄(s
′, s2))] .

Forward TD with Function Approximation 19/38

Forward TD with Function Approximation

Theorem (TD Update for Successor States with Approximation)

Consider the model Mθ(s,ds
′) = mθ(s, s

′)ρ(ds′). For the loss J(θ) := 1
2∥Mθ −M tar∥2ρ, the

gradient of J(θ) is

−∂θJ(θ) = Es,s2∼ρ,s′∼Pπ(s,ds′)

∂θmθ(s, s)︸ ︷︷ ︸
Singular term

+ ∂θmθ(s, s2)(γmθ̄(s
′, s2)−mθ(s, s2))︸ ︷︷ ︸

Nxt step error


where ρ is a sampling distribution over states (e.g. stationary distribution, stationary buffer).

Forward TD with Function Approximation 20/38

Matrix Factorization: The

Forward-Backward

Representation

Matrix Factorization: Forward-Backward (FB) Representation

Even with function approximation, learning mθ(s, s
′) for all pairs can be challenging. A useful

approach is to restrict M to a low-rank form:

Definition (Forward-Backward Factorization)

We approximate the successor operator by a rank-r factorization:

M(s,ds′) = F (s)⊤B(s′)ρ(ds′),

where F : S → Rr and B : S → Rr are learnable feature vectors (with parameters θF , θB).

In matrix form, M ≈ F B⊤. We call F (s) the forward representation of state s and B(s′)

the backward representation of state s′.

Intuitively, F (s) encodes the long-term dynamics starting from s, while B(s′) encodes how

reachable state s′ is (acting like a representation of ”goals”).

Low-Rank Approximation of M 21/38

Matrix Factorization: Forward-Backward (FB) Representation

Even with function approximation, learning mθ(s, s
′) for all pairs can be challenging. A useful

approach is to restrict M to a low-rank form:

Definition (Forward-Backward Factorization)

We approximate the successor operator by a rank-r factorization:

M(s,ds′) = F (s)⊤B(s′)ρ(ds′),

where F : S → Rr and B : S → Rr are learnable feature vectors (with parameters θF , θB).

In matrix form, M ≈ F B⊤. We call F (s) the forward representation of state s and B(s′)

the backward representation of state s′.

Intuitively, F (s) encodes the long-term dynamics starting from s, while B(s′) encodes how

reachable state s′ is (acting like a representation of ”goals”).

Low-Rank Approximation of M 21/38

Matrix Factorization: Forward-Backward (FB) Representation

Even with function approximation, learning mθ(s, s
′) for all pairs can be challenging. A useful

approach is to restrict M to a low-rank form:

Definition (Forward-Backward Factorization)

We approximate the successor operator by a rank-r factorization:

M(s,ds′) = F (s)⊤B(s′)ρ(ds′),

where F : S → Rr and B : S → Rr are learnable feature vectors (with parameters θF , θB).

In matrix form, M ≈ F B⊤. We call F (s) the forward representation of state s and B(s′)

the backward representation of state s′.

Intuitively, F (s) encodes the long-term dynamics starting from s, while B(s′) encodes how

reachable state s′ is (acting like a representation of ”goals”).

Low-Rank Approximation of M 21/38

Why Low Rank?

Why the matrix M = (I − γPπ)−1 should be low rank?

1. Denote by st the state at time t. In many systems we have that st+∆ ≈ st for ∆
sufficiently small.

2. Example: dynamical systems

dx

dt
= Ax(t)⇒ x(t+∆) = eA∆x(t) = (I +A∆+ . . .)x(t).

3. For continuous-time operators associated with random diffusions, I − Pπ has few

small and many large eigenvalues.

4. For such property to hold we must have P ≈ I +X−1, where X−1 is like a second-order

term (≈ low rank).

5. Results that use P to be low rank usually do not work well in practice (they miss the

identity term!)
Low-Rank Approximation of M 22/38

Why Low Rank?

Why the matrix M = (I − γPπ)−1 should be low rank?

1. Denote by st the state at time t. In many systems we have that st+∆ ≈ st for ∆
sufficiently small.

2. Example: dynamical systems

dx

dt
= Ax(t)⇒ x(t+∆) = eA∆x(t) = (I +A∆+ . . .)x(t).

3. For continuous-time operators associated with random diffusions, I − Pπ has few

small and many large eigenvalues.

4. For such property to hold we must have P ≈ I +X−1, where X−1 is like a second-order

term (≈ low rank).

5. Results that use P to be low rank usually do not work well in practice (they miss the

identity term!)
Low-Rank Approximation of M 22/38

Why Low Rank?

Why the matrix M = (I − γPπ)−1 should be low rank?

1. Denote by st the state at time t. In many systems we have that st+∆ ≈ st for ∆
sufficiently small.

2. Example: dynamical systems

dx

dt
= Ax(t)⇒ x(t+∆) = eA∆x(t) = (I +A∆+ . . .)x(t).

3. For continuous-time operators associated with random diffusions, I − Pπ has few

small and many large eigenvalues.

4. For such property to hold we must have P ≈ I +X−1, where X−1 is like a second-order

term (≈ low rank).

5. Results that use P to be low rank usually do not work well in practice (they miss the

identity term!)
Low-Rank Approximation of M 22/38

Why Low Rank?

Why the matrix M = (I − γPπ)−1 should be low rank?

1. Denote by st the state at time t. In many systems we have that st+∆ ≈ st for ∆
sufficiently small.

2. Example: dynamical systems

dx

dt
= Ax(t)⇒ x(t+∆) = eA∆x(t) = (I +A∆+ . . .)x(t).

3. For continuous-time operators associated with random diffusions, I − Pπ has few

small and many large eigenvalues.

4. For such property to hold we must have P ≈ I +X−1, where X−1 is like a second-order

term (≈ low rank).

5. Results that use P to be low rank usually do not work well in practice (they miss the

identity term!)
Low-Rank Approximation of M 22/38

Connections with SVD

Is there some connection with SVD? Let Mapprox = F⊤Bρ.

J =
1

2
∥Mapprox∥2ρ − ⟨Mapprox,M⟩ρ,

≈ 1

2
∥Mapprox −M∥2ρ,

=
1

2
Es,s′∼ρ

ñÅ
F (s, s′)⊤B(s, s′)− M(s,ds′)

ρ(ds′)

ã2ô
.

We are looking for the d-rank best approximation of M/ρ (SVD in L2(ρ)). See

Eckart–Young–Mirsky theorem.

Low-Rank Approximation of M 23/38

Connections with SVD

Is there some connection with SVD? Let Mapprox = F⊤Bρ.

J =
1

2
∥Mapprox∥2ρ − ⟨Mapprox,M⟩ρ,

≈ 1

2
∥Mapprox −M∥2ρ,

=
1

2
Es,s′∼ρ

ñÅ
F (s, s′)⊤B(s, s′)− M(s,ds′)

ρ(ds′)

ã2ô
.

We are looking for the d-rank best approximation of M/ρ (SVD in L2(ρ)). See

Eckart–Young–Mirsky theorem.

Low-Rank Approximation of M 23/38

Connections with SVD

Is there some connection with SVD? Let Mapprox = F⊤Bρ.

J =
1

2
∥Mapprox∥2ρ − ⟨Mapprox,M⟩ρ,

≈ 1

2
∥Mapprox −M∥2ρ,

=
1

2
Es,s′∼ρ

ñÅ
F (s, s′)⊤B(s, s′)− M(s,ds′)

ρ(ds′)

ã2ô
.

We are looking for the d-rank best approximation of M/ρ (SVD in L2(ρ)). See

Eckart–Young–Mirsky theorem.

Low-Rank Approximation of M 23/38

Connections with SVD

Is there some connection with SVD? Let Mapprox = F⊤Bρ.

J =
1

2
∥Mapprox∥2ρ − ⟨Mapprox,M⟩ρ,

≈ 1

2
∥Mapprox −M∥2ρ,

=
1

2
Es,s′∼ρ

ñÅ
F (s, s′)⊤B(s, s′)− M(s,ds′)

ρ(ds′)

ã2ô
.

We are looking for the d-rank best approximation of M/ρ (SVD in L2(ρ)). See

Eckart–Young–Mirsky theorem.

Low-Rank Approximation of M 23/38

Connections with SVD

Is there some connection with SVD? Let Mapprox = F⊤Bρ.

J =
1

2
∥Mapprox∥2ρ − ⟨Mapprox,M⟩ρ,

≈ 1

2
∥Mapprox −M∥2ρ,

=
1

2
Es,s′∼ρ

ñÅ
F (s, s′)⊤B(s, s′)− M(s,ds′)

ρ(ds′)

ã2ô
.

We are looking for the d-rank best approximation of M/ρ (SVD in L2(ρ)). See

Eckart–Young–Mirsky theorem.

Low-Rank Approximation of M 23/38

Advantages of the FB Representation

▶ Direct value estimation: F and B together allow immediate computation of the value

for any reward function. For example, if R(s) is a reward function

V (R)(s) ≈ F (s)⊤B(R),

where B(R) := Es∼ρ[R(s)B(s)]. Thus, we get a value function estimate at every state

without explicitly learning a separate value network.

▶ Generalization across states: The low-rank assumption provides a form of regularization

or prior: states that have similar long-term dynamics will learn similar F and B

representations.

▶ Implicit second-order effects: The forward-backward model tends to prioritize learning

the major dynamical modes of the Markov chain (eigenvectors corresponding to large

eigenvalues of P).

Low-Rank Approximation of M 24/38

Advantages of the FB Representation

▶ Direct value estimation: F and B together allow immediate computation of the value

for any reward function. For example, if R(s) is a reward function

V (R)(s) ≈ F (s)⊤B(R),

where B(R) := Es∼ρ[R(s)B(s)]. Thus, we get a value function estimate at every state

without explicitly learning a separate value network.

▶ Generalization across states: The low-rank assumption provides a form of regularization

or prior: states that have similar long-term dynamics will learn similar F and B

representations.

▶ Implicit second-order effects: The forward-backward model tends to prioritize learning

the major dynamical modes of the Markov chain (eigenvectors corresponding to large

eigenvalues of P).

Low-Rank Approximation of M 24/38

Advantages of the FB Representation

▶ Direct value estimation: F and B together allow immediate computation of the value

for any reward function. For example, if R(s) is a reward function

V (R)(s) ≈ F (s)⊤B(R),

where B(R) := Es∼ρ[R(s)B(s)]. Thus, we get a value function estimate at every state

without explicitly learning a separate value network.

▶ Generalization across states: The low-rank assumption provides a form of regularization

or prior: states that have similar long-term dynamics will learn similar F and B

representations.

▶ Implicit second-order effects: The forward-backward model tends to prioritize learning

the major dynamical modes of the Markov chain (eigenvectors corresponding to large

eigenvalues of P).

Low-Rank Approximation of M 24/38

Shortcomings of the FB Representation

▶ Limited capacity (rank-r approximation): By constraining M to rank r, we cannot

perfectly represent the true M . Important dynamics corresponding to smaller singular

values of M may be neglected.

▶ This means fine-grained or rapidly changing aspects of the reward structure (e.g. very

localized rewards that vary quickly from state to state) might be smoothed out or

underrepresented. The FB model tends to focus on the dominant, “long-range” structures

in the state space.

▶ Mitigation: One can combine the low-rank SSR with a standard value function to

capture the residual. For example, use V (s) = F (s)⊤B(R) + vϕ(s), where vϕ(s) is a

separate value function learned for the specific reward.

Low-Rank Approximation of M 25/38

Shortcomings of the FB Representation

▶ Limited capacity (rank-r approximation): By constraining M to rank r, we cannot

perfectly represent the true M . Important dynamics corresponding to smaller singular

values of M may be neglected.

▶ This means fine-grained or rapidly changing aspects of the reward structure (e.g. very

localized rewards that vary quickly from state to state) might be smoothed out or

underrepresented. The FB model tends to focus on the dominant, “long-range” structures

in the state space.

▶ Mitigation: One can combine the low-rank SSR with a standard value function to

capture the residual. For example, use V (s) = F (s)⊤B(R) + vϕ(s), where vϕ(s) is a

separate value function learned for the specific reward.

Low-Rank Approximation of M 25/38

Shortcomings of the FB Representation

▶ Limited capacity (rank-r approximation): By constraining M to rank r, we cannot

perfectly represent the true M . Important dynamics corresponding to smaller singular

values of M may be neglected.

▶ This means fine-grained or rapidly changing aspects of the reward structure (e.g. very

localized rewards that vary quickly from state to state) might be smoothed out or

underrepresented. The FB model tends to focus on the dominant, “long-range” structures

in the state space.

▶ Mitigation: One can combine the low-rank SSR with a standard value function to

capture the residual. For example, use V (s) = F (s)⊤B(R) + vϕ(s), where vϕ(s) is a

separate value function learned for the specific reward.

Low-Rank Approximation of M 25/38

Deep Reward-Free RL

Forward-Backward for Deep-RL

Starting point

Mπ(s, a,ds′) = F (s, a)⊤B(s′)ρ(ds′).

▶ Consider a family of policies {πz} parameterized by a vector z ∈ Rd.

▶ Assume that for all z, we can find (Fz, B) (F is parameterized by z) such that

Mz(s, a,ds′) = F⊤
z (s, a)B(s′)ρ(ds′)

▶ Then, if πz induces a distribution ρ

Qz(s, a) = Eπz

∑
t≥1

γt−1rt|s1 = s, a1 = as

 ,
=

[
(I − γPπz)−1r

]
(s, a),

= [Mzr] (s, a) =

∫
s′
F⊤
z (s, a)B(s′)r(s′)ρ(ds′).

FB Method for Reward-Free Deep RL 26/38

Forward-Backward for Deep-RL

Starting point

Mπ(s, a,ds′) = F (s, a)⊤B(s′)ρ(ds′).

▶ Consider a family of policies {πz} parameterized by a vector z ∈ Rd.

▶ Assume that for all z, we can find (Fz, B) (F is parameterized by z) such that

Mz(s, a,ds′) = F⊤
z (s, a)B(s′)ρ(ds′)

▶ Then, if πz induces a distribution ρ

Qz(s, a) = Eπz

∑
t≥1

γt−1rt|s1 = s, a1 = as

 ,
=

[
(I − γPπz)−1r

]
(s, a),

= [Mzr] (s, a) =

∫
s′
F⊤
z (s, a)B(s′)r(s′)ρ(ds′).

FB Method for Reward-Free Deep RL 26/38

Forward-Backward for Deep-RL

Starting point

Mπ(s, a,ds′) = F (s, a)⊤B(s′)ρ(ds′).

▶ Consider a family of policies {πz} parameterized by a vector z ∈ Rd.

▶ Assume that for all z, we can find (Fz, B) (F is parameterized by z) such that

Mz(s, a,ds′) = F⊤
z (s, a)B(s′)ρ(ds′)

▶ Then, if πz induces a distribution ρ

Qz(s, a) = Eπz

∑
t≥1

γt−1rt|s1 = s, a1 = as

 ,
=

[
(I − γPπz)−1r

]
(s, a),

= [Mzr] (s, a) =

∫
s′
F⊤
z (s, a)B(s′)r(s′)ρ(ds′).

FB Method for Reward-Free Deep RL 26/38

Forward-Backward for Deep-RL

Starting point

Mπ(s, a,ds′) = F (s, a)⊤B(s′)ρ(ds′).

▶ Consider a family of policies {πz} parameterized by a vector z ∈ Rd.

▶ Assume that for all z, we can find (Fz, B) (F is parameterized by z) such that

Mz(s, a,ds′) = F⊤
z (s, a)B(s′)ρ(ds′)

▶ Then, if πz induces a distribution ρ

Qz(s, a) = Eπz

∑
t≥1

γt−1rt|s1 = s, a1 = as

 ,
=

[
(I − γPπz)−1r

]
(s, a),

= [Mzr] (s, a) =

∫
s′
F⊤
z (s, a)B(s′)r(s′)ρ(ds′).

FB Method for Reward-Free Deep RL 26/38

Forward-Backward for Deep-RL

Starting point

Mπ(s, a,ds′) = F (s, a)⊤B(s′)ρ(ds′).

▶ Consider a family of policies {πz} parameterized by a vector z ∈ Rd.

▶ Assume that for all z, we can find (Fz, B) (F is parameterized by z) such that

Mz(s, a,ds′) = F⊤
z (s, a)B(s′)ρ(ds′)

▶ Then, if πz induces a distribution ρ

Qz(s, a) = Eπz

∑
t≥1

γt−1rt|s1 = s, a1 = as

 ,
=

[
(I − γPπz)−1r

]
(s, a),

= [Mzr] (s, a) =

∫
s′
F⊤
z (s, a)B(s′)r(s′)ρ(ds′).

FB Method for Reward-Free Deep RL 26/38

Forward-Backward for Deep-RL

Qz(s, a) =

∫
s′
F⊤
z (s, a)B(s′)r(s′)ρ(ds′).

Let

zr = Es∼ρ

[
B(s)r(s)

]
.

If we define πz by

πz(s) = argmax
a

(
Fz(s, a)

⊤z
)
,

then πzr is the optimal policy for reward r, since Qzr = F⊤
zr (s, a)zr.

FB Method for Reward-Free Deep RL 27/38

Forward-Backward for Deep-RL

Qz(s, a) =

∫
s′
F⊤
z (s, a)B(s′)r(s′)ρ(ds′).

Let

zr = Es∼ρ

[
B(s)r(s)

]
.

If we define πz by

πz(s) = argmax
a

(
Fz(s, a)

⊤z
)
,

then πzr is the optimal policy for reward r, since Qzr = F⊤
zr (s, a)zr.

FB Method for Reward-Free Deep RL 27/38

Forward-Backward for Deep-RL

Qz(s, a) =

∫
s′
F⊤
z (s, a)B(s′)r(s′)ρ(ds′).

Let

zr = Es∼ρ

[
B(s)r(s)

]
.

If we define πz by

πz(s) = argmax
a

(
Fz(s, a)

⊤z
)
,

then πzr is the optimal policy for reward r, since Qzr = F⊤
zr (s, a)zr.

FB Method for Reward-Free Deep RL 27/38

Forward-Backward for Deep-RL

Let’s slow down...

zr = Es∼ρ

[
B(s)r(s)

]
is like a representation.

▶ If we think of the reward function r as a vector in some Hilbert space, then we are simply

projecting r onto the space spanned by B

▶ For the method to make sense we need to have Es∼ρ[B(s)B(s)⊤] to be full rank

z = B⊤r ⇒ r = (BB⊤)−1Br

▶ The eigenvectors of Es∼ρ[B(s)B(s)⊤] define a basis in this space.

FB Method for Reward-Free Deep RL 28/38

Goal

We need to learn Fz, B. How?

Mz(s, a,ds′) = Fz(s, a)
⊤B(s′)ρ(ds′).

▶ Remember the norm ∥M∥2ρ = Es,s′∼ρ[m(s, s′)2].

▶ Goal: find (Fz, B) such that, for all z, we have

Mz = I + γPπzMz

and

πz(s) = argmax
a

(
Fz(s, a)

)
.

▶ How? TD-Learning on J(θ) = ∥Mz
θ − (I + γPπzMz

θ̄
)∥2ρ.

FB Method for Reward-Free Deep RL 29/38

Goal

We need to learn Fz, B. How?

Mz(s, a,ds′) = Fz(s, a)
⊤B(s′)ρ(ds′).

▶ Remember the norm ∥M∥2ρ = Es,s′∼ρ[m(s, s′)2].

▶ Goal: find (Fz, B) such that, for all z, we have

Mz = I + γPπzMz

and

πz(s) = argmax
a

(
Fz(s, a)

)
.

▶ How? TD-Learning on J(θ) = ∥Mz
θ − (I + γPπzMz

θ̄
)∥2ρ.

FB Method for Reward-Free Deep RL 29/38

Goal

We need to learn Fz, B. How?

Mz(s, a,ds′) = Fz(s, a)
⊤B(s′)ρ(ds′).

▶ Remember the norm ∥M∥2ρ = Es,s′∼ρ[m(s, s′)2].

▶ Goal: find (Fz, B) such that, for all z, we have

Mz = I + γPπzMz

and

πz(s) = argmax
a

(
Fz(s, a)

)
.

▶ How? TD-Learning on J(θ) = ∥Mz
θ − (I + γPπzMz

θ̄
)∥2ρ.

FB Method for Reward-Free Deep RL 29/38

Forward-backward method: training

▶ Parametrize Fz, B by θ. Let mz
θ = (F θ

z)
⊤Bθ

z , thus

Mz
θ (s, a,ds

′) = mz
θ(s, a, s

′)ρ(ds′).

▶ For (θ, θ̄), define the learning objective:

J ′(z; θ) =
1

2
∥Mz

θ ∥2ρ − ⟨Mz
θ ,M

tar⟩ρ

where M tar = I + γPπzMz
θ̄
.

FB Method for Reward-Free Deep RL 30/38

Forward-backward method: training

▶ Parametrize Fz, B by θ. Let mz
θ = (F θ

z)
⊤Bθ

z , thus

Mz
θ (s, a,ds

′) = mz
θ(s, a, s

′)ρ(ds′).

▶ For (θ, θ̄), define the learning objective:

J ′(z; θ) =
1

2
∥Mz

θ ∥2ρ − ⟨Mz
θ ,M

tar⟩ρ

where M tar = I + γPπzMz
θ̄
.

FB Method for Reward-Free Deep RL 30/38

Gradient with replay buffer

Gradient step

We know very well that ∂θJ
′(θ) = ∂θJ(θ), therefore

−∂θJ(θ) = E(s,a,s′)∼D,(s2,a2)∼D [∂θmθ(s, a, s) + ∂θmθ(s, a, s
′)(γmθ̄(s2, a2, s

′)−mθ(s, a, s
′))]

where D is the data distribution induced by the policy and mz
θ(s, a, s

′) = F θ
z (s, a)

⊤Bθ
z (s

′)

▶ Practically speaking, D is the replay buffer. At every training step we sample two random

independent samples from the replay buffer D.

▶ One contributes due to visiting s′ from s.

▶ Another from a different random state s′′.

FB Method for Reward-Free Deep RL 31/38

Training procedure: networks

FB Method for Reward-Free Deep RL 32/38

Training

Algorithm 1 Off-policy Training Procedure

1: Initialize θ, θ̄

2: while not converged do

3: Sample z ∼ Sd−1 ▷ from the surface of a unit sphere

4: Collect data using policy πz and add to replay buffer D

5: Sample batches (B,B′) ∼ D and compute gradient:

−∂θJ(θ) ≈ Ê(s,a,s′)∼B,(s2,a2)∼B′

[
∂θmθ(s, a, s

′)+∂θmθ(s, a, s
′)
(
γ mθ(s2, a2, s

′)−mθ(s, a, s
′)
)]

6: where mz
θ(s, a, s

′) = F z
θ (s, a)

⊤Bz
θ (s

′)

7: Update parameters θ ← θ − η∂θJ(θ) using the computed gradient

8: if every N steps then

9: Set θ̄ ← θ.

10: end if

11: end while

FB Method for Reward-Free Deep RL 33/38

Other tricks and technicalities

▶ We add a regularization term
∥∥E(B⊤B)− I

∥∥2
ρ
to ensure cov(B) = I.

▶ The computation of the target value can be numerically unstable (large gradients).

▶ One way to solve the issue: replace the greedy πz = argmaxa Fz(s, a)
⊤z with a

regularized version

πz = softmax
(
Fz(s, a)

⊤z/τ
)
.

▶ Use a combination of linear + layer normalization + tanh layers to extract features.

FB Method for Reward-Free Deep RL 34/38

Test time

How does the method work at test time?

▶ For a specific reward r we need to compute z.

▶ Recall z = Es∼ρ[B(s)r(s)].

▶ Sample a batch D from the buffer, and compute zr = 1
|D|

∑
s∈D B(s)r(s).

▶ Obtain the policy πzr (s) = argmaxa Fzr (s)
⊤zr.

FB Method for Reward-Free Deep RL 35/38

4-Rooms Example

Random initial state/goal at every episode.
FB Method for Reward-Free Deep RL 36/38

Conclusion

Conclusions

▶ Takeaway: Successor representations offer a powerful framework for goal-conditioned

value learning and reward-free RL in a model-free fashion.

▶ The theoretical insights can guide the design of efficient RL algorithms in continuous state

spaces.

37/38

Conclusions

▶ Takeaway: Successor representations offer a powerful framework for goal-conditioned

value learning and reward-free RL in a model-free fashion.

▶ The theoretical insights can guide the design of efficient RL algorithms in continuous state

spaces.

37/38

References i

Léonard Blier, Corentin Tallec, and Yann Ollivier, Learning successor states and

goal-dependent values: A mathematical viewpoint, arXiv preprint arXiv:2101.07123 (2021).

Ahmed Touati and Yann Ollivier, Learning one representation to optimize all rewards,

Advances in Neural Information Processing Systems 34 (2021), 13–23.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier, Does zero-shot reinforcement learning

exist?, arXiv preprint arXiv:2209.14935 (2022).

38/38

	Introduction
	Introduction
	Markov Process and Successor States

	Forward TD for Successor States: Tabular Case
	Bellman Equation and Contraction
	Tabular TD Algorithm

	Forward TD for Successor States: Continuous Case
	The Continuous Case
	Forward TD with Function Approximation

	Matrix Factorization: The Forward-Backward Representation
	Low-Rank Approximation of M

	Deep Reward-Free RL
	FB Method for Reward-Free Deep RL

	Conclusion

