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Introduction



Paper: Regret Lower Bound [Lai, 1987]
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Motivation

Today we discuss unstructured multi-armed bandit problems (MAB). We will talk about:

1. Deriving asymptotic instance-dependent regret lower bounds in the Bayesian setting

[Lai, 1987, Atsidakou et al., 2023]).

2. Possible extensions and some considerations on this topic.
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Model and Assumptions

Consider a MAB problem with a = 1, . . . ,K arms:

▶ Sequential: In round t the learner pulls arm at ∈ [K] and receives the reward rt ∼ θat .
▶ Each arm a is characterized by a density function f(r; θa) with respect to the Lebesgue

measure, and θa ∈ Θ is an unknown parameter that belongs to some open set Θ ⊂ R.
▶ (Integrability) For all θ ∈ Θ we assume that µa(θ) := Eθa [|R|] =

∫
R |r|f(r; θa)dr <∞.

▶ (Bayesian Prior) We denote by H = (H1, . . . ,HK) a factorized prior distribution on ΘK ,

with density h(θ) =
∏
a ha(θa) (note that each ha may be different).

▶ We indicate by µ⋆(θ) := maxa µa(θ) the value of the best arm.

In Bayesian analysis, also the model θ is a random variable. 5/36
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Problems Considered

▶ Regret Minimization: Minimize the regret incurred in not choosing the best arm in each

time-step over an horizon T .

▶ Best Arm Identification objective: quickly find the optimal arm with confidence at-least

1− δ, δ ∈ (0, 1/2).
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Bayesian vs Frequentist Regret Lower Bound

▶ Can we just compute the average frequentist lower bound over many different problems?

Average computed over 3000000 sampled MAB problems. Shaded areas indicate the 95% C.I.

The frequentist lower bound simply explodes with continuous priors.
7/36



Single-parameter exponential family

We consider f(r; θa)to belong to the single-parameter exponential family1

fa(r; θ) = exp(θar − ψ(θa)),

where ψ(θa) is the cumulant generating function2.

▶ θa is called natural parameter.

▶ ψ̇(θa) =
dψ
dθa

= µa(θ) is the mean value and ψ̈(θa) = Er∼θa [(r − ψ̇(θa))
2] is the variance.

We also have that ψ̇ is increasing in θa, and we let θ⋆ = maxa θa.

▶ Kullback-Leibler (KL) Divergence defined as

D(θa, θ
′
a) = (θa − θ′a)ψ̇(θa)− (ψ(θa)− ψ(θ′a))

Ç
=

∫ θ′a

θa

(t− θa)ψ̈(t)dt

å
1Includes Bernoulli, Poisson, Gaussian distribution with known variance, etc. [Efron, 2022].

2For a r.v. X the cumulant ψ is defined as logE[eX ].
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Properties for single-parameter exponential distributions

Observation. For the single-parameter exponential distribution family we have that for

y > x, with x, y ∈ [a, b], ∃c1, c2 > 0 such that

c1(y − x) ≥ [ψ̇(y)− ψ̇(x)]︸ ︷︷ ︸
mean values

≥ 2c2
D(x, y)

(y − x)
> 0.

Proof.

1. By the mean value theorem ∃ξ ∈ (x, y): ψ̇(y)− ψ̇(x) = ψ̈(ξ)(y − x) ≥ min
z∈[a,b]

ψ̈(z)(y − x) (the

upper bound follows similarly).

2. Then, recall D(x, y) = (x− y)ψ̇(x)− (ψ(x)− ψ(y)) =
∫ y
x
(t− x)ψ̈(t)dt.

3. We use that ψ̇ is increasing and differentiable ⇒ ψ̈ > 0. Thus D(x, y) ≤ maxz∈[a,b] ψ̈(z)

2
(x− y)2.

ψ̇(y)− ψ̇(x) = ψ̈(ξ)(y − x) ≥ ψ̈(x)(y − x) ≥
minz1∈[a,b] ψ̈(z1)

maxz2∈[a,b] ψ̈(z2)
· 2D(x, y)

(y − x)
.
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Regret Minimization: lower

bound



Sampling rule or allocation rule

Denote by π = (πt)t≥1 the sampling rule of the learner (a.k.a. allocation rule). Concretely

▶ π is a sequence of measurable functions, each of which associates past data with an arm,

namely

at+1 = πt(It), where It = (u0, a1, r1, u1, . . . , at, rt, ut), I0 = u0.

and (ut)t≥0 is a sequence of iid uniform noise, such that ut is independent of It−1 and

(at, rt). Thus at ∈ Ft−1 := σ(It−1).

▶ Let Na(t) =
∑t
n=1 1{at=a} be the number of times we selected arm a up to time t.
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Regret Minimization

For a fixed θ ∈ ΘK , define the regret at time T as:

Reg(T ; θ) = Eθ

[
T∑
t=1

µ⋆(θ)− µat(θ)

]
,

= Tµ⋆(θ)−
∑
a

Eθ [µa(θ)Na(T )] ,

=
∑

a:µa(θ)<µ⋆(θ)

µ⋆(θ)− µa(θ)︸ ︷︷ ︸
=:∆a(θ)

Eθ[Na(T )], ▷ Use that T =
∑
aNa(T )

=
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )].

Bayesian Regret (Bayes Risk): Reg(T ) = Eθ∼H [Reg(T ; θ)] =
∫
ΘK Reg(T ; θ)dH(θ)︸ ︷︷ ︸

prior

.
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Bayesian Regret vs Frequentist Regret

Bayesian Regret Reg(T ) =
∫
ΘK Reg(T ; θ)dH(θ) vs Frequentist Regret Reg(T ; θ)

The problem is: do we consider the model θ fixed or not? Why should we average over H if

the problem is fixed in reality?3

▶ Note that people have applied Bayesian algorithms to the Frequentist regret: Posterior

sampling helps with exploration (epistemic uncertainty).

▶ Similarly, UCB-designs have been used to find rules that are efficient in the Bayesian

regret sense.

▶ In this work we study the Bayesian regret.

3Some people claim that uncertainty in the model can be seen as uncertainty in future data. Personally, I lean

more towards the frequentist view.
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Optimal solutions

Bayesian Regret: Reg(T ) =
∫
ΘK Reg(T ; θ)dH(θ).

Dynamic programming. In principle, one could use dynamic programming to find a solution.

The problem becomes impractical for general MAB problems

[Fabius and Zwet, 1970, Lai, 1987]. Simple example:

▶ Bernoulli bandits with uniform prior on the means. The posterior is a Beta distribution

Beta(Sa(t) + 1, Na(t)− Sa(t) + 1), where Na(t) = |{t ∈ [K] : at = a}| and
Sa(t) = |{t : rat = 1}.

▶ We can define an MDP with state st = ((Sa(t), Na(t)− Sa(t))a).

▶ Use Dynamic programming, etc... to solve this MDP [Gittins, 1979].

⇒ great interest to develop simple algorithms that are optimal in the Bayesian sense.
13/36
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Bayesian Regret Lower Bound: Proof Idea

Bayesian Regret Reg(T ) =
∫
ΘK Reg(T ; θ)dH(θ).

We now derive an asymptotic instance-dependent lower bound for the Bayesian Regret.

Proof idea:

1. Recall that Reg(T ; θ) =
∑
a:µa(θ)<µ⋆(θ) ∆a(θ)Eθ[Na(T )].

2. Lower bound lim infT→∞ Eθ[Na(T )] ≥ k(θ;T ).

3. Integrate
∫
∆a(θ)k(θ;T )dH(θ).
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2. Lower bound lim infT→∞ Eθ[Na(T )] ≥ k(θ;T ).

3. Integrate
∫
∆a(θ)k(θ;T )dH(θ).

Wrong! We need to integrate and then take the limit. Need to be careful, since the lower

bound needs to have some form of uniformity in θ!
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Frequentist Regret Minimization

In frequentist regret we usually look at uniformly fast convergent strategies.

Uniformly fast convergent strategies. A strategy π is uniformly fast convergent if for

all models θ, for all sub-optimal arms a we have Eθ[Na(T )] = o(Tα) for all α ∈ (0, 1).

Using this result, by a change-of-measure argument, we can show that

Eθ[Na(T )] ∼
T→∞

log(T )

D(θa, θ⋆)

▶ However, the condition Eθ[Na(T )] = o(Tα) is not uniform in θ. The convergence is

pointwise, and for different θs the convergence speed may be different.4

▶ If θ⋆ = θa + ϵ with ϵ→ 0, then

Eθ[Na(T )]
log T

∼ 1

D(θa, θa + ϵ)
∼ 1

ϵ2
→
ϵ→0

∞.

4This is important, since we will take an integral over Θ of the regret.
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Frequentist Regret Minimization

10 100 500 1,000

50

100

T

ln
(T

)
K
L
(θ

a
,θ

a
+
ϵ)

ϵ = 0.5 (frequentist)

ϵ = log(T )√
T

ϵ = 1√
log T

Remark: Just saying that π is uniformly fast convergent strategy is not enough. We need to

guarantee uniform convergence across different values of θ.
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Some notation

Notation.

▶ For an arm a and vector θ, denote by θ\a = (θ1, . . . , θa−1, θa+1, . . . , θK) the

vector θ without θa. Similarly, we also define H\a.

▶ Let θ⋆\a = maxj ̸=a θj be the best element in θ\a and recall that θ⋆ = maxa θa.

▶ Also recall that µa(θ) = ψ̇(θa), which is increasing in θa. Hence θ
⋆ corresponds to

the parameter of the best arm.

Using this last fact, we also write

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

18/36



Some notation

Notation.

▶ For an arm a and vector θ, denote by θ\a = (θ1, . . . , θa−1, θa+1, . . . , θK) the

vector θ without θa. Similarly, we also define H\a.

▶ Let θ⋆\a = maxj ̸=a θj be the best element in θ\a and recall that θ⋆ = maxa θa.

▶ Also recall that µa(θ) = ψ̇(θa), which is increasing in θa. Hence θ
⋆ corresponds to

the parameter of the best arm.

Using this last fact, we also write

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

18/36



Some notation

Notation.

▶ For an arm a and vector θ, denote by θ\a = (θ1, . . . , θa−1, θa+1, . . . , θK) the

vector θ without θa. Similarly, we also define H\a.

▶ Let θ⋆\a = maxj ̸=a θj be the best element in θ\a and recall that θ⋆ = maxa θa.

▶ Also recall that µa(θ) = ψ̇(θa), which is increasing in θa. Hence θ
⋆ corresponds to

the parameter of the best arm.

Using this last fact, we also write

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

18/36



Some notation

Notation.

▶ For an arm a and vector θ, denote by θ\a = (θ1, . . . , θa−1, θa+1, . . . , θK) the

vector θ without θa. Similarly, we also define H\a.

▶ Let θ⋆\a = maxj ̸=a θj be the best element in θ\a and recall that θ⋆ = maxa θa.

▶ Also recall that µa(θ) = ψ̇(θa), which is increasing in θa. Hence θ
⋆ corresponds to

the parameter of the best arm.

Using this last fact, we also write

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

18/36



Bayesian Regret Lower Bound: Proof Idea

Proof idea: uniformly lower bound ∆a(θ)Eθ[Na(T )] over a small region around θ⋆ (i.e., where

the gap is small ⇒ this region contributes the most to the regret), and take the limit. Write

the regret as follows

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

Then, we can integrate and note that it is sufficient to consider the case θa < θ⋆:∫
ΘK

Reg(T ; θ)dH(θ) =

∫
ΘK

∑
a:θa<θ⋆

∆a(θ)Eθ[Na(T )] dH(θ),

=

∫
ΘK

∑
a

∆a(θ)Eθ[Na(T )]1{θa<θ⋆} dH(θ),

=
∑
a

∫
θ∈ΘK :θa<θ⋆\a

∆a(θ)Eθ[Na(T )] dH(θ)

Focus on the integral (it’s the same integral for each a). And now? 19/36



Bayesian Regret Lower Bound: Proof Idea

Proof idea: uniformly lower bound ∆a(θ)Eθ[Na(T )] over a small region around θ⋆ (i.e., where

the gap is small ⇒ this region contributes the most to the regret), and take the limit. Write

the regret as follows

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

Then, we can integrate and note that it is sufficient to consider the case θa < θ⋆:∫
ΘK

Reg(T ; θ)dH(θ) =

∫
ΘK

∑
a:θa<θ⋆

∆a(θ)Eθ[Na(T )] dH(θ),

=

∫
ΘK

∑
a

∆a(θ)Eθ[Na(T )]1{θa<θ⋆} dH(θ),

=
∑
a

∫
θ∈ΘK :θa<θ⋆\a

∆a(θ)Eθ[Na(T )] dH(θ)

Focus on the integral (it’s the same integral for each a). And now? 19/36



Bayesian Regret Lower Bound: Proof Idea

Proof idea: uniformly lower bound ∆a(θ)Eθ[Na(T )] over a small region around θ⋆ (i.e., where

the gap is small ⇒ this region contributes the most to the regret), and take the limit. Write

the regret as follows

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

Then, we can integrate and note that it is sufficient to consider the case θa < θ⋆:∫
ΘK

Reg(T ; θ)dH(θ) =

∫
ΘK

∑
a:θa<θ⋆

∆a(θ)Eθ[Na(T )] dH(θ),

=

∫
ΘK

∑
a

∆a(θ)Eθ[Na(T )]1{θa<θ⋆} dH(θ),

=
∑
a

∫
θ∈ΘK :θa<θ⋆\a

∆a(θ)Eθ[Na(T )] dH(θ)

Focus on the integral (it’s the same integral for each a). And now? 19/36



Bayesian Regret Lower Bound: Proof Idea

Proof idea: uniformly lower bound ∆a(θ)Eθ[Na(T )] over a small region around θ⋆ (i.e., where

the gap is small ⇒ this region contributes the most to the regret), and take the limit. Write

the regret as follows

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

Then, we can integrate and note that it is sufficient to consider the case θa < θ⋆:∫
ΘK

Reg(T ; θ)dH(θ) =

∫
ΘK

∑
a:θa<θ⋆

∆a(θ)Eθ[Na(T )] dH(θ),

=

∫
ΘK

∑
a

∆a(θ)Eθ[Na(T )]1{θa<θ⋆} dH(θ),

=
∑
a

∫
θ∈ΘK :θa<θ⋆\a

∆a(θ)Eθ[Na(T )] dH(θ)

Focus on the integral (it’s the same integral for each a). And now? 19/36



Bayesian Regret Lower Bound: Proof Idea

Proof idea: uniformly lower bound ∆a(θ)Eθ[Na(T )] over a small region around θ⋆ (i.e., where

the gap is small ⇒ this region contributes the most to the regret), and take the limit. Write

the regret as follows

Reg(T ; θ) =
∑

a:µa(θ)<µ⋆(θ)

∆a(θ)Eθ[Na(T )] =
∑

a:θa<θ⋆

∆a(θ)Eθ[Na(T )]

Then, we can integrate and note that it is sufficient to consider the case θa < θ⋆:∫
ΘK

Reg(T ; θ)dH(θ) =

∫
ΘK

∑
a:θa<θ⋆

∆a(θ)Eθ[Na(T )] dH(θ),

=

∫
ΘK

∑
a

∆a(θ)Eθ[Na(T )]1{θa<θ⋆} dH(θ),

=
∑
a

∫
θ∈ΘK :θa<θ⋆\a

∆a(θ)Eθ[Na(T )] dH(θ)

Focus on the integral (it’s the same integral for each a). And now? 19/36



Uniform Boundary Crossing Problem

To our help comes Prof. Lai [Lai, 1987]. With a single parameter, he noted that UCB

methods (based on the KL divergence5) satisfy the following:

Let S = inf{n ≤ T : UCB(n) ≤ θ + ϵ}, then, as T → ∞

Pθ(S ≤ (1− γ)(logNϵ2)/D(θ, θ + ϵ)) → 0 ∀γ ∈ (0, 1)

uniformly in αT ≤ ϵ ≤ βT , with αT → 0, βT → ∞ and
√
TαT → ∞, βT = o(

√
log T ).

▷ for a given θ we need to sample at a rate ≈ log(Tϵ2)/ϵ2 to detect an ϵ difference.

▶ When integrating over ϵ we get
∫
log(Tϵ2)/ϵ2dϵ = − lnT

ϵ − 2 1+ln ϵ
ϵ + C = − 2+lnTϵ2

ϵ + C.

Over a small region, e.g. (log−1 T, T−1/2), we get ∼ log2(T ).

5UCB(n) = inf{θ : θ ≥ θ̂n, nD(θ̂n, θ) ≥ log(n/T ) + ξ log log(n/T )} for some ξ ∈ R and θ̂n is the MLE in

round n.
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Bayesian Regret Lower Bound: Assumptions on the Sampling Policy

Using this intuition, [Lai, 1987] derived the following sampling condition 6.

Let ξ, γ ∈ (0, 1). π is a Bayes-uniformly fast convergent strategy if

lim
T→∞,ϵ→0,T ϵ2→∞

∫
ΘK−1

Pθ

Ç
Na(T ) ≤ (1− γ)

log Tϵ2

D(θa, θ⋆\a + ξϵ)

å
ha(θa)dH(θ\a) = 0

with θa = θ⋆\a − ϵ.

The probability that we under-sample over regions with small gaps tends to 0.

6Recall from the previous slide that we need a sampling rate ≈ log(Tϵ2)/ϵ2. Since θa = θ⋆\a − ϵ we have

D(θa, θ⋆\a + ξϵ) ≈ (1 + ξ)2ϵ2.
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Bayesian Regret Lower Bound: Final Steps

∫
θ∈ΘK :θa<θ⋆

∆a(θ)Eθ[Na(T )] dH(θ) =

∫
θ∈ΘK :θa<θ⋆\a

∆a(θ)Eθ[Na(T )] dH(θ) = (∗)

The idea is to consider θa = θ⋆\a − ϵ, with ϵ belonging to a small region around the maximum.

We consider an open set ET ⊂ R+ such that ET → {0} (more details on this later).

(∗) =
∫
θ∈ΘK−1

∫
θa<θ⋆\a

∆a(θ)Eθ[Na(T )]dHa(θa) dH\a(θ\a),

≥
∫
θ∈ΘK−1

∫
θ⋆\a−θa∈ET

∆a(θ)Eθ[Na(T )] dHa(θa)dH\a(θ\a),

=

∫
θ∈ΘK−1

∫
ET

(ψ̇(θ⋆\a)− ψ̇(θ⋆\a − ϵ))Eθ[Na(T )]ha(θ⋆\a − ϵ) dϵ dH\a(θ\a),

where we used that ∆a(θ) = maxj µj(θ)− µa(θ) = maxj ψ̇(θj)− ψ̇(θa) and performed a

change of variable θa = θ⋆\a − ϵ, ϵ ∈ ET .
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Let γ ∈ (0, 1). Use that

1. pθ(T, ϵ) = Pθ
(
Na(T ) ≤ (1− γ) log Tϵ2

D(θ⋆\a−ϵ,θ
⋆
\a+ξϵ)

)
7 implies

E[Na(θ)] ≥ (1− pθ(T, ϵ))(1− γ)
log Tϵ2

D(θ⋆\a − ϵ, θ⋆\a + ξϵ)

by Markov’s inequality. Note also that D(θ⋆\a − ϵ, θ⋆\a + ξϵ) ≤ c′(1 + ξ)2ϵ2/2

2. By continuity, for ϵ small we can say ha(θ
⋆
\a − ϵ) ≈ ha(θ

⋆
\a).

3. Also note that ψ̇(θ⋆\a)− ψ̇(θ⋆\a − ϵ) ≥ cϵ for y ≈ x by continuity.

4. Then, for ϵ, ξ sufficiently small, by continuity we have

(ψ̇(θ⋆\a)− ψ̇(θ⋆\a − ϵ))ha(θ
⋆
\a − ϵ) ≥ 2(1− γ)ha(θ

⋆
\a)

D(θ⋆\a − ϵ, θ⋆\a + ξϵ)

ϵ
.

7This is the quantity appearing in the Bayes-uniformly fast convergent strategy assumption.
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Bayesian Regret Lower Bound: Final Steps

(∗) ≥ 2(1− γ)2
∫
θ∈ΘK−1

ha(θ
⋆
\a)

∫
ET

(1− pθ(T, ϵ))
log Tϵ2

ϵ
dϵ dH\a(θ\a)

Recall

Let ξ, γ ∈ (0, 1). π is a Bayes-uniformly fast convergent strategy if

lim
T→∞,ϵ→0,T ϵ2→∞

∫
ΘK−1

Pθ

Ç
Na(T ) ≤ (1− γ)

log Tϵ2

D(θ⋆\a − ϵ, θ⋆\a + ξϵ)

å
ha(θ

⋆
\a)dH(θ\a) = 0

For now, trust me that the term
∫
ha(θ

⋆
\a)

∫
pθ(T, ϵ)dϵdH\a(θ\a) tends to 0. Then,

asymptotically

Reg(T ) ∼ 2(1− γ)2
∑
a

∫
ha(θ

⋆
\a)

∫
ET

log Tϵ2

ϵ
dϵdH\a(θ\a)
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Bayesian Regret Lower Bound: Final Steps

Reg(T ) ∼ 2(1− γ)2
∑
a

∫
ΘK−1

ha(θ
⋆
\a)

∫
ET

log Tϵ2

ϵ
dϵdH\a(θ\a)

How to choose ET ? [Lai, 1987] show that inf ET = T−(1−γ)/2. Then, consider

ET = (T−(1−γ)/2, 1/ log T ) (the upper bound need to be o(Tα) for any α ∈ (0, 1)). Then∫
ET

log Tϵ2

ϵ
dϵ =

1

4
log2(Tϵ2)

∣∣∣1/ log T
T−(1−γ)/2

=
1− γ2

4
log2 T −O(log2 log2 T ).

The end. Letting γ → 0 and T → ∞, we obtain

lim inf
T→∞

Reg(T )

log2 T
≥ 1

2

∑
a

∫
ΘK−1

ha(θ
⋆
\a)dH\a(θ\a).
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Discussion



What did we not discuss?

Congrats for reaching this point!

There are still some things we have not yet disucssed...

▶ What is the intuition behind the lower bound?

▶ Show how the condition on pθ(T, ϵ) makes
∫ ∫

pθ(T, ϵ) → 0 (see appendix).

▶ Why inf ET = N−(1−γ)/2 (We will not discuss this)

▶ How is the definition of a Bayes-uniformly fast convergent strategy derived? (We will not

discuss this) .

▶ Is there a simpler way to derive all of this? (unclear).

▶ Can we use this result to derive optimal algorithms?
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What does it mean?

lim inf
T→∞

Reg(T )

log2 T
≥

∑
a

1

2

∫
ΘK−1

ha(θ
⋆
\a)dH\a(θ\a)︸ ︷︷ ︸

=:K⋆
a

, K⋆ :=
∑
a

K⋆
a .

▶ The regret is only characterized by the complexity of the priors!

▶ K⋆
a denotes the complexity for arm a: large K⋆

a implies a larger likelihood that a is close

to optimality (if ha(θ
⋆
\a) is large, then it becomes harder to distinguish between a and the

other good arm).

▶ Can we simplify K⋆
a?
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What does it mean? Simplification.

lim inf
T→∞

Reg(T )

log2 T
≥

∑
a

1

2

∫
ΘK−1

ha(θ
⋆
\a)dH\a(θ\a)︸ ︷︷ ︸

=:K⋆
a

, K⋆ :=
∑
a

K⋆
a .

Assume i.i.d. (θa)a (i.i.d. priors) with ha ≡ h ∀a (sim. Ha ≡ H). Then H\a = HK−1,

implying

PH(θ⋆\a ≤ x) = PH(θ1 ≤ x, . . . , θa−1 ≤ x, θa+1 ≤ x, . . . , θK ≤ x) = HK−1(x).

⇒ K⋆ =
K

2

∫
Θ

h(θ)dHK−1(θ)

Since dHK−1(θ) = (K − 1)HK−2(θ)dH(θ) and dH(θ) = h(θ)dθ

K⋆ =
K(K − 1)

2

∫
Θ

h2(θ)HK−2(θ)dθ
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PH(θ⋆\a ≤ x) = PH(θ1 ≤ x, . . . , θa−1 ≤ x, θa+1 ≤ x, . . . , θK ≤ x) = HK−1(x).

⇒ K⋆ =
K

2

∫
Θ

h(θ)dHK−1(θ)

Since dHK−1(θ) = (K − 1)HK−2(θ)dH(θ) and dH(θ) = h(θ)dθ

K⋆ =
K(K − 1)

2

∫
Θ

h2(θ)HK−2(θ)dθ
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Connections to order statistics

K⋆ =
K(K − 1)

2

∫
Θ

h2(θ)HK−2(θ)dθ

there is actually a connection to order statistics.

Order statistics. Given a random vector θ = (θ1, . . . , θK), sort the components into a vector

(θ(1), . . . , θ(K)) satisfying

θ(1) ≤ θ(2) ≤ · · · ≤ θ(K).

This vector is called the order statistics of θ.

▶ The joint pdf f of (θK−1, θK) (with cdf F ) is [Casella and Berger, 2024]

f(x, y) = K(K − 1)f(x)f(y)FK−2(x)

Letting x→ y we find limx→y f(x, y) = K(K − 1)f2(y)FK−2(y).This is the limiting

contribution when the two upper-most samples almost tie.
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Other interpreation

Since limx→y f(x, y) = K(K − 1)f2(y)FK−2(y), another connection is to see the overall

integral as the chance that the top two samples fall into it a tiny interval

P(|θ(K) − θ(K−1)| < ϵ) = K(K − 1)

∫
Θ

∫ ϵ

0

h(θ)h(θ + ϵ)HK−2(θ) dϵ dθ,

= 2K⋆ϵ+ o(ϵ)

Thus
P(|θ(K) − θ(K−1)| < ϵ)

ϵ
→
ϵ→0

2K⋆.
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Scaling of K⋆

Scaling of K⋆ vs K, with: (1) H = U([0, 1]) ; (2) H = N (0, 1) and (3) H = Ber(0.5)

(uniform, Gaussian, Bernoulli).

We consider a MAB problem with K arms and Gaussian rewards N (θa, 1), with θa drawn iid

from the prior.
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Bayesian vs Frequentist Regret Lower Bound

▶ Can we just compute the average frequentist lower bound over many different problems?

Same setting as in the previous slide, with K = 5. Average computed over 3000000 sampled MAB

problems. Shaded areas indicate the 95% C.I.

The frequentist lower bound simply explodes with continuous priors.Examples 32/36



Algorithm Design

Can we use the lower bound to design asymptotically optimal algorithms? Probably. I believe

the intuition is to solve the following problem

inf
η

∑
a

∫
ηa∆a(θ)dH(θ) s.t.

∫
ΘK−1

ηaD(θa, θ
⋆
\a)ha(θa)dH\a(θ\a) ≥ 1

where η ∈ ∆(K) represents the proportion of times we should play each arm 8

8This is probably incorrect, but the true problem should vaguely resemble this one.
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Conclusion



Conclusions9

Possible extensions:

▶ Optimal algorithms based on the lower bound.

▶ Bayesian regret lower bounds for MDPs.

▶ A more comprehensive analysis of Bayesian BAI.

9Credits to Flaticon.com for some of the logos used in this presentation.
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Appendix



Condition on pθ(T, ϵ)

We need to show that

(∗) =
∫
ΘK−1

ha(θ
⋆
\a)

∫
ET

pθ(T, ϵ)dϵdH\a(θ\a) → 0,

where (ET )T is a sequence of open sets, satisfying such that λ(ET ) <∞ (Lebesgue measure)

for all T , with supET ≤ supET−1, inf ET ≤ inf ET−1 and ET →
T→∞

{0}.

Note

(∗) ≤ λ(ET )
∫
ΘK−1

[ sup
ϵ∈ET

pθ(T, ϵ)]ha(θ
⋆
\a)dH\a(θ\a).

We show how we can rewrite the original condition in this form.
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Bayesian Regret Lower Bound: Final Steps

lim
T→∞,ϵ→0,T ϵ2→∞

∫
ΘK−1

pθ(T, ϵ)ha(θ
⋆
\a)dH(θ\a)︸ ︷︷ ︸

gT (ϵ)

= 0

This limit also implies that

∀δ > 0 ∃Tδ ∈ N, αδ,Kδ ∈ R+ : gT (ϵ) < δ whenever (T, ϵ) ∈ {T, ϵ : T ≥ Tδ, ϵ ≤ αδ, T ϵ
2 ≥ Kδ}.

Consider the set ET = (1/T (1−γ)/2, log−1 T ). Then

▶ ∀αδ ∃T ′
δ : log−1 T ≤ αδ whenever T ≥ T ′

δ.

▶ ∀Kδ ∃T ′′
δ : T γ ≥ Kδ whenever T ≥ T ′′

δ .

Set T ⋆δ = max(Tδ, T
′
δ, T

′′
δ ). Then

∀δ > 0 ∃T ⋆δ ∈ N : sup
ϵ∈ET

gT (ϵ) < δ whenever T ≥ T ⋆δ .
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Bayesian Regret Lower Bound: Final Steps

Therefore

lim
T→∞,ϵ→0,T ϵ2→∞

gT (ϵ) = lim
T→∞

sup
ϵ∈ET

gT (ϵ) = 0.

Then, observe that by Tonelli-Fubini

λ(ET ) sup
ϵ∈ET

gT (ϵ) ≥
∫
ET

∫
ΘK−1

pθ(T, ϵ)ha(θ
⋆
\a)dH(θ\a)dϵ,

=

∫
ΘK−1

∫
ET

pθ(T, ϵ)ha(θ
⋆
\a)dϵdH(θ\a) ≥ 0.

Since λ(ET ) <∞ and both supϵ∈ET
gT (ϵ) → 0 and λ(ET ) → 0, then

λ(ET ) supϵ∈ET
gT (ϵ) → 0,
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