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SEQUENTIAL DESIGN OF EXPERIMENTS
By HermMaN CHERNOFF!
Stanford University

1. Introduction. Considerable scientific research is characterized as follows.
The scientist is interested in studying a phenomenon. At first he is quite ig-
norant and his initial experiments are preliminary and tentative. As he gathers
relevant data, he becomes more definite in his impression of the underlying
theory. This more definite impression is used to construct more informative
experiments. Finally after a certain point he is satisfied that his evidence is
sufficient to allow him to announce certain conclusions and he does so.
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1. Introduction. Considerable scientific research is characterized as follows.
The scientist is interested in studying a phenomenon. At first he is quite 1g-
norant and his initial experiments are preliminary and tentative. As he gathers
relevant data, he becomes more definite in his impression of the underlying
theory. This more definite impression is used to construct more informative
experiments. Finally after a certain point he is satisfied that his evidence is
sufficient to allow him to announce certain conclusions and he does so.

Pure Exploration is the Machine Learning term for what a statistician would call active
sequential hypothesis testing® [Naghshvar and Javidi, 2013].

"Wouter Koolen, https://homepages.cwi.nl/~wmkoolen/PureExploration18/#why.
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1. Introduction. Considerable scientific research is characterized as follows.
The scientist is interested in studying a phenomenon. At first he is quite ig-
norant and his initial experiments are preliminary and tentative. As he gathers
relevant data, he becomes more definite in his impression of the underlying
theory. This more definite impression is used to construct more informative
experiments. Finally after a certain point he is satisfied that his evidence is
sufficient to allow him to announce certain conclusions and he does so.

Pure exploration is about inferring an underlying true hypothesis. How should you
allocate experiments based on what you can infer from their outcomes?
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Reinforcement Learning (RL) [Lai and Robbins, 1985].
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Pure Exploration vs Regret Minimization

Probably you are familiar with the " Exploration/Exploitation” trade-off in
Reinforcement Learning (RL) [Lai and Robbins, 1985].

Exploration vs Exploitation: accumulate reward by choosing good actions -

Yet, to know that an action is good, you need to explore... <

But...what is the difference between Pure Exploration and Regret Minimization?

» Pure Exploration is the rebellious counter-movement: “pure” refers to how fast it
learns, with no regard for how much it earns.
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For what problems is it useful?

1. Minimizing the number of DNA-based tests performed to accurately detect cancer

[Gan et al., 2021] aﬁ

®, €
2. Improving recommendations in recommender systems [Resnick and Varian, 1997] @.
3. Quickly identifying a faulty sensor [Hero and Cochran, 2011] _(((.=.|£)))_

4. Active search on the celestial sphere O

| Let's check some examples more in detail. |
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Example: Digit Detection

()
Step 1 Step 2 Step 3 ©\
True Image ;'
AR
\'/J,
/A

Step 5 Step 6 Step 7

Step 9 Step 10 Step 11
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Example: Best Arm Identification (BAI) [ ]

?‘( 'f.“g;i‘if

Consider a Multi-Armed Bandit problem with K arms [Lattimore and Szepesvari, 2020]:
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Example: Best Arm Identification (BAI) [ ]

» You can select one arm a at the time and observe a random reward with mean value .

» The optimal arm is a* = argmax, fiq.

» How do we quickly identify the optimal arm a* with some confidence level § € (0,1)?

Some Examples 7/49
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Some Problems and Limitations

How do we compute adaptive exploration strategies?

Adaptive Exploration

A truly intelligent agent should tailor exploration to the difficulty of the problem; treating
all problems the same is not a sign of intelligent behavior. (self cit.)

—> The solution should adapt to the problem at hand.
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Some Problems and Limitations

| It's hard to find optimal solutions to pure exploration problems. \

How does the solution look like? Informally, the solution is characterized by this problem:

Confusing model

inf E KL(P P
blrlrp P,Glflt(P) :c~p”[ (P(z), P'(z))]

Exploration policy

» o7 is the data distribution induced by 7 and P is the true data model.
» P’ is a confusing model: different from P, but optimized so that it's statistically similar

when collecting data with 7.

= Find 7 that maximizes the collected evidence!
Limitations 9/49
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Some Problems and Limitations

» Recent advances in BAI showed how to characterize the optimal exploration strategy in

simple i.i.d. Bandit models [Garivier and Kaufmann, 2016] @ %
y AL RN

» Most results are limited to tabular problems, and extending to more complex settings is
difficult.
> For tabular Markov Decision Processes (MDPs) the optimal exploration strategy is
characterized by a non-convex problem [Al Marjani et al., 2021].
> In some cases it is not possible to identify the underlying true hypothesis [Russo et al., 2025].
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Can we design a simple, but general, method that learns how to solve pure exploration
problems efficiently?

IN-CONTEXT LEARNING FOR PURE EXPLORATION

Alessio Russo* Ryan Welch* Aldo Pacchiano

Boston University Stanford University Boston Universit;

arusso2@bu.edu rcwelch@stanford.edu Broad Institute of MIT and Harvard
pacchian@bu.edu

ABSTRACT

We study the problem active sequential hypothesis testing, also known as pure
exploration: given a new task, the learner adaptively collects data from the environ-
ment to efficiently determine an underlying correct hypothesis. A classical instance
of this problem is the task of identifying the best arm in a multi-armed bandit
problem (ak.a. BAI, Best-Arm Identification), where actions index hypotheses.
Another important case is generalized search, a problem of determining the correct
label through a sequence of strategically selected queries that indirectly reveal
information about the label. In this work, we introduce /n-t C»mexr Pure Explo-
ration (ICPE), which 2 s T 1o map histories to
query actions and a predicted hypvme.n , yielding a model that transfe:
At inference time, ICPE actively gathers evidence on new tasks and infers the
true hypothesis without parameter updates. Across deterministic, stochastic, and
structured benchmarks, including BAI and generalized scarch, ICPE i
tive with adaptive baselines while requiring no explicit modeling of information
structure. Our results support Transformers as practical architectures for general
sequential testing.
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Alessio Russo* Ryan Welch™1 Aldo Pacchiano » In-Context Pure Explorer ( ICP E) is a
Boston University Stanford University Boston Universit;
arusso2@bu.edu rcwelch@stanford.edu Broad Institute of MIT and Harvard .
% pavchiantbu.eda Transformer-based architecture
meta-trained on a family of tasks to learn
ABSTRACT
We study the problem active sequential hypothesis testing, also known as pure an exp | oration pOl |cy

exploration: given a new task, the learner adaptively collects data from the environ-

ment to efficiently determine an underlying correct hypothesis. A classical instance X .

of this problem is the task of identifying the best arm in a multi-armed bandit > _ .
problem (a.k.a. BAL, Best-Arm Identification), where actions index hypotheses ICPE is a model that transfers in-context:
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ICPE: In

Pure exploration is about inferring an underlying true hypothesis. How should you
allocate experiments based on what you can infer from their outcomes?

(D) It's a sequential problem. In each round t you observe z; and choose an
AL . . .
experiment (action) a;. We model it:

Ti41 at
iv
s &
An agent 7 interacts
with the
environment and
collects data.
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Pure exploration is about inferring an underlying true hypothesis. How should you
allocate experiments based on what you can infer from their outcomes?

It's a sequential problem. In each round t you observe z; and choose an

mi([De) experiment (action) a;. We model it:
Tyl ag 1. Define the hypothesis space H.
f’é 2. Define the query/action/experiment space A (i.e., the ways you can
» interact).

. 3. Define the observation space X (what you observe after an interaction).
An agent 7 interacts

with the 4. Define the dynamics P of the environment: P(xy41|z1,a1,...,2¢, at)
environment and (i.e., how does the environment react after selecting a,? how does it
collects data. depend on past interactions?)
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=- we assume there exists a functional A* mapping P — H, dynamics to hypotheses. We set
H* = h*(P).
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ICPE: Intro

=- we assume there exists a functional A* mapping P — H, dynamics to hypotheses. We set
H* = h*(P).

Definition (Environment)
We define an environment to be M = (X, A, P, H*).
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ICPE: Modeling Example

How do we model the Best Arm Identification problem?

» H* = argmax, i, (arm with highest mean reward).
» P(:|a) is the reward distribution when you select action a € {1,..., K'}.

» Upon selecting action a you observe 2 ~ P(:|a), the reward.

BAI Example 14/49



ICPE: Prior and Objectives

Last ingredient is the assumption that we have a prior P over a set of environments M,
representing our belief of M.
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Last ingredient is the assumption that we have a prior P over a set of environments M,

representing our belief of M.

SEQUENTIAL DESIGN OF EXPERIMENTS
By HerMAN CHERNOFF!
Stanford University

1. I ducti Considerable scienti: h is ch terized as follows.
The scientist is interested in studying a phenomenon. At first he is quite ig-
norant and his initial experiments are preliminary and tentative. As he gathers
relevant data, he becomes more definite in his impression of the underlying
theory. This more definite impression is used to construct more informative
experiments. Finally after a certain point he is satisfied that his evidence is
sufficient to allow him to announce certain conclusions and he does so.

Modeling

Objectives:
1. Fixed Budget: maximize evidence
over a horizon.

2. Fixed Confidence: quickly collect
evidence.
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ICPE: Prior and Objectives

First objective:
Definition (Fixed Budget Problem)
Given a horizon N € N, the learner chooses a policy 7 and inference rule I maximizing the

evidence after IV queries:
sug) P (In(Dy) = H"). (1)
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ICPE: Prior and Objectives

Second objective:

Definition (Fixed Confidence Problem)
Given a target error level 6 € (0,1), minimize the number of samples 7 needed to identify H*
with confidence 1 — §:

ian E"[r] st. P"(I.(D,)=H")> 1-—0. (2)
where
» D, = (z1,a1,...,a,,7,) is the set of data collected up to time 7 2.

» 7(:|D;) is the policy of the agent (mapping D; — A(A) from data to probabilities over
actions).

» [:D; — H is the inference rule of the agent, mapping data to a hypothesis.

221 is the initial observation.
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ICPE: How to learn 7, [?

(- Dy)
> All very good...but how do we learn 7, I, 7?7 How do we optimize

T4l

inf E"[r] st. P™(I(D,)=H")> 1—6.

f’ # ol

or the fixed budget objective?

An agent 7 interacts
with the
environment and
collects data.

Modeling 18/49



ICPE: How to learn 7, [?

b
!
7t (|Dy)
» All very good...but how do we learn 7, I, 77 How do we optimize

Tt41 Qg

f' infl E™[r] st. P"(I,(D;)=H*)> 1-04.

# T,T,
’ or the fixed budget objective?

An agent 7 interacts » Intuitively, optimizing ™ seems an RL problem... and learning I seems
with the like a supervised learning problem.

environment and
collects data.

Modeling 18/49



ICPE: How to learn 7, [?

b
7t (|Dy)
» All very good...but how do we learn 7, I, 77 How do we optimize

Tt41 Qg

i-. infl E™[r] st. P"(I,(D;)=H*)> 1-04.

# T,T,
’ or the fixed budget objective?

An agent 7 interacts » Intuitively, optimizing ™ seems an RL problem... and learning I seems
with the

like a supervised learning problem.

environment and

» We need a bit of theory that can point us out in the right direction.
collects data.
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Why Theory?

» First, we see that optimizing the inference rule I amounts to computing a posterior
distribution3.

3The results we present here hold for general continuous observation/action spaces (but finite number of
hypotheses).
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» First, we see that optimizing the inference rule I amounts to computing a posterior
distribution3.

» Secondly, the policy 7 can be learned using RL with an appropriate reward function.

Importantly, the reward function used for training m emerges naturally from the problem
formulation, and it is not a user-chosen criterion, making it a principled information-
theoretical reward function.

3The results we present here hold for general continuous observation/action spaces (but finite number of
hypotheses).
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Optimal Inference Rule

Idea: can we find an inference rule that is m-independent to simplify the optimization problem?
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Optimal Inference Rule

Idea: can we find an inference rule that is m-independent to simplify the optimization problem?

Proposition
Lett > 1 and a policy m. The optimal inference rule maximizing sup; P™(H* = I,(D;)) is
given by

I*(D;) = argmax P(H* = H|Dy)*,
HeH

where P(H* € -|D,) is the posterior distribution of H*.

In other words, the optimal prediction is the hypothesis that maximizes the posterior
distribution of the true hypothesis.

4D, is a possible trajectory (z1,a1,...,xt).

Optimal Inference Rule 20/49



Optimal Policy in Fixed Budget

Consider the fixed budget setting.
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Consider the fixed budget setting. Using the previous result, we can immediately conclude

that for all ¢t > 1

s:g)IF’”(H* =1(Dy)) = SngW[T(Dt)]

where 7(D;) = maxpyey P:(H* = H|D;). Does this ring a @?

}' We can use RL! \
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Wait.. we use RL to solve an exploration problem? “It's like hiring a tour guide. .. who asks
you to show them around first!”
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. are we back to

~
We can use RL! ‘

J

\.

Wait.. we use RL to solve an exploration problem? “It's like hiring a tour guide. .. who asks
you to show them around first!”

Is it always an RL problem at the end?

ICPE: Fixed Budget 22/49



Optimal Exploration Policy in Fixed Budget

sﬁu?P”(H* =1(D;)) = SngW[T(Dt)]

where 7(D;) = maxycy Py(H* = H|Dy).
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Optimal Exploration Policy in Fixed Budget

supP™(H* = I(D;)) = supE™[r(D;)]
7,1 i

where 7(D;) = maxycy Py(H* = H|Dy).

Proposition (Policy Optimality)
For any t > 1 the policy 7*(D;) = argmax, ¢ 4 Q+(Dy, a) is optimal, where

‘/If(Dt) = max Qt(Dta Cl), Qt(Dtv CL) = / ‘/25+1(Dt7a7x/) pt(dm/‘,Dta a) ) t < Na
acA X N—— —_————

=Di+1 posterior distribution of x’

with VN(DN) = MaXgeH Pt(H* = H|DN)

ICPE: Fixed Budget 23/49



The Fixed Confidence Setting

Recall the fixed confidence setting

inf E™[r] st P"([(D,)=H")> 1-0.

7,7, 1

» 7 indicates the number of samples... formally, it's a stopping rule.
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7,7, 1

» 7 indicates the number of samples... formally, it's a stopping rule. Informally, this rule
tells you if you should stop or continue given the data D;.

» First simplification: we define a stopping action agop and set A < AU {asiop
T = inf{t €eN:a = astop}
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The Fixed Confidence Setting

Recall the fixed confidence setting

inf E™[r] st P"([(D,)=H")> 1-0.

7,7, 1

» 7 indicates the number of samples... formally, it's a stopping rule. Informally, this rule
tells you if you should stop or continue given the data D;.

» First simplification: we define a stopping action agop and set A < AU {asiop
7 =1inf{t € N: a; = asiop} = the policy m decides when to stop.

» Second simplification: we study the dual problem!.
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The Fixed Confidence Setting

dual problem

)i\r;%sup Va(m,I), where Vy(m,I):=—E"[r]+ A[P"(I(D,;)=H")—1+].
2V grpdl
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» Can we use the optimal inference rule result?
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The Fixed Confidence Setting

{ We then study the dual problem \

)i\r;%sup Va(m,I), where Vy(m,I):=—E"[r]+ A[P"(I(D,;)=H")—1+].
2V grpdl

» Can we use the optimal inference rule result? Yes.
» Can it be simplified to an RL problem? Yes.

» Do we get the §-probably correct guarantees?
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The Fixed Confidence Setting

{ We then study the dual problem \

)i\r;%sup Va(m,I), where Vy(m,I):=—E"[r]+ A[P"(I(D,;)=H")—1+].
2V grpdl

» Can we use the optimal inference rule result? Yes.
» Can it be simplified to an RL problem? Yes.

» Do we get the §-probably correct guarantees? Not immediately.

ICPE: Fixed Confidence 25/49



The Fixed Confidence Setting: Optimal Exploration Policy

)i\r;%sup Va(m,I), where Vy(m,I):=—FE"[r]+ X[P" (I(D,)=H")—1+94].
ZY I
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The Fixed Confidence Setting: Optimal Exploration Policy

)i\r;%sup Va(m,I), where Vy(m,I):=—FE"[r]+ X[P" (I(D,)=H")—1+94].
2V gl

Define the reward

(D¢, a) = —Liaztamop} T Al {a=asop} H%lx]p(H* = H|D,),
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The Fixed Confidence Setting: Optimal Exploration Policy

;\rzlgsﬂu? Va(m,I), where Vi(m,I):=—-E"[7]+ A[P" (I(D,;) =H*)—1+4].
Define the reward

"A(Dt; @) = ~Lartanop} + Al {a=auo,) MaxP(H™ = H[Dy),
and the Q-function

QA(Dy, a) = 7A(Dt, @) + Liazazop} Earpr|(Dera) max Q41,1 (Dt a, 441), a/)} :

where x441|(Dy, a) indicates the posterior distribution of x;1 given (Dy,a).
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The Fixed Confidence Setting: Optimal Exploration Policy

rA(Dt,a) = —Liatagop) T Al{a:astop} m}E}XP(H* = H|Dy),

QA(Dy,a) = 7A(Dt, @) + Liazazop} Earsr|(Dera) Max Qr41,1 ((Dy, a,w141),0")] .
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The Fixed Confidence Setting: Optimal Exploration Policy

rA(Dt,a) = —Liatagop) T Al{a:astop} m}E}XP(H* = H|Dy),

QA(Dy,a) = 7A(Dt, @) + Liazazop} Earsr|(Dera) Max Qr41,1 ((Dy, a,w141),0")] .

Proposition

Let 73 (D;) = argmax,c 4 @Qx(Dy, a). Then, for X > 0 the pair (I*,73) , (with I* as before),
is an optimal solution of sup,. ; Vx(m,I). Furthermore, under suitable identifiability
conditions®, any maximizer \* guarantees that m%. satisfies the 0-correctness criterion.

5See the appendix for more details.
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The Fixed Confidence Setting: Optimal Exploration Policy

rA(Dt,a) = —Liatagop) T Al{a:astop} m}E}XP(H* = H|Dy),

QA(Dy,a) = 7A(Dt, @) + Liazazop} Earsr|(Dera) Max Qr41,1 ((Dy, a,w141),0")] .

Proposition

Let 73 (D;) = argmax,c 4 @Qx(Dy, a). Then, for X > 0 the pair (I*,73) , (with I* as before),
is an optimal solution of sup,. ; Vx(m,I). Furthermore, under suitable identifiability
conditions®, any maximizer \* guarantees that m%. satisfies the 0-correctness criterion.

We can do RL! Rejoice!

5See the appendix for more details.
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Ok we can use RL...What else do we have? A prior.)
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Ok we can use RL...What else do we have? A prior.)

@‘ we have a simulator that can sample from this prior...]

[...We could then learn 7, I using data from this simulator...j

[...and then use 7, I on the real problem.)

[Anything else? Yes, we use Transformers to handle the sequence of data Dt.]
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Training vs Inference

Training time

Exploration Agent () Inference time

-)-)- - --) Exploration Phase Inference Phase
T / \at ~ 7(+|Dy) 7 (+|Dt)
N .
Inference Agent () Environment (M) Tt41 a |:> Hy = IN(:[Dn)
28 43 L)
\_/ ’

Typ1 ~ Py(-| Dy, ay)

» At training time ICPE interacts with a simulator: each episode draws an instance M ~ P
and generates a trajectory.

» \We maintain a buffer B to store the training data.
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Training phase

o

Let us consider the fixed confidence setting. \What do we have?

I*(D;) = argmaxP(H* = H|Dy),
HeH

T)\(Dt7a) = —l{a;ﬁaswr)} + )\l{a:astop} mI?X]P(H* = H|Dt),

QA(D1,0) = 13(D1,0) + Laanrop B (Do) [M3X Quirr (Diy 0, 7141), 0')|
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Training phase

o

Let us consider the fixed confidence setting. \What do we have?

I (D) = argmaxP(H* = H|D;) = learn I[(H|D;) = P(H* = H|D;) ,
HeH

T)\(Dt7a) = —l{a;ﬁaswr)} + )\l{a:astop} mI?X]P(H* = H|Dt),

QA(D1,0) = 12(D1,0) + Laanop) Earsr[(Dr.a) [M3X Quirr (Diy 0, 7141), 0')|
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Training phase

o

Let us consider the fixed confidence setting. \What do we have?

I* (D) = argmaxP(H* = H|D;) = learn I[(H|D;) = P(H* = H|Dy) ,
HeH

T)\(Dh a) = _l{a;ﬁascop} + )\l{a:astop} rll]‘(']tX ](H‘D[/),

Qx(Dy, a) = 7A(Dy, @) + iazazop} Eaypr|(Dera) [H}IE}X Qir1.x (D, a,2841), a')} :
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Training phase

o

Let us consider the fixed confidence setting. \What do we have?

I* (D) = argmaxP(H* = H|D;) = learn I[(H|D;) = P(H* = H|Dy) ,
HeH

T)\(Dh a) = _l{a;ﬁascop} + )\l{a:astop} rll]‘(}X ](H‘D[/),

Qx(Dy, a) = 7A(Dy, @) + iazazop} Eaypr|(Dera) [H}IE}X Qir1.x (D, a,2841), a')} :

J

General idea: cross-entropy loss to learn I and your favorite off-policy Deep-RL technique to

learn .
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nference rule

Inference rule: parametrize I by ¢. We train it with the loss®

Lot = - > logI4(H*[Diya). 3)

| B -
(D¢ at,xe41,H*)EB

where B ~ B is a batch of data from the buffer.

6In expectation this is (up to an additive constant) equivalent to minimizing the KL-divergence between
P(H* = H|D) and I,(H|D).
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Exploration policy: @

T(D“ a’) = _1{1175045«:013} + Al{a:astop} m]_?‘X Io (H|Dt)7
~~~

target network

Q(‘)(Dh Cl) = T(Dta CL) + ]-{a;éasmp}Ezprl\('Dt,a) H}IE}’X Q() ((Dt7 a, mt-‘rl)a Cl/)

target network

» We use target parameters ¢ and 6 to stabilize training”. 8

"Target networks were introduced in DQN [Mnih et al., 2013]

8We also use a cost variable ¢ instead of A to avoid the product A - I (see appendix for details).
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Training phase: exploration policy

7(Dt,0) = —Lartayop} + M {a=anop} Max I5(H|Dy),

Qo(Dy,a) = r(Dy,a) + Liaztasopt Bary|(Dsa) [II}ZE}XQé ((Dtaa’mt+1)?a/)] .

We use this DQN-like loss

! 2
Lootiey (B3 9) = |B] Z Laitasop} * (_1 +max Qg(De+1,a) — Qe(Dt,at)) (4)
(Dt,at,x¢41)EB

2
—+ ()\ m}é}XI&(H‘Df) = QG(Dt7aSt0p)) (5)

9

9The Q-value of astop can be updated at any time, allowing retrospective evaluation of stopping.
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Training phase: Lagrangian variable

Last, but not least, we need to update Al

)i\r;f(’)sup Va(m,I), where Vy(m,I):=—E"[r]+ A[P"(I(D,;)=H")—1+9].
2V ppdl
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Training phase: Lagrangian variable

Last, but not least, we need to update Al

)i\r;%sup Va(m,I), where Vy(m,I):=—E"[r]+ A[P"(I(D,;)=H")—1+9].
2V arpdl
We learn A\ using a gradient descent update:

A+ max[0,A—B(p—1+0)], where p= {arg maxy, To(H|IDD )} =H?} (6)

HMN

using K i.i.d. trajectories {(D$Z ,HX)YE | with fixed (6, ¢).
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Full algorithm

Algorithm 1 ICPE (In-Context Pure Exploration)

1:

10:

12:

13:
14:

15:

o At

Input: Tasks distribution P; confidence §; horizon N'; initial A and hyper-parameter Ty, Tp.
// Training phase

: Initialize buffer B, networks Qg, I, and set @ « 6, ¢ < ¢.
: while Training is not over do
Sample environment M ~ P with hypothesis H*, observe z1 ~ p and set ¢ «+ 1.
repeat
Execute action a: = arg max, Qs(Dt, a) in M and observe x¢41.
Add partial trajectory (D¢, as, T241, H*) to Band set t + ¢ + 1.
until at—1 = Gstop o1t > N.
In the fixed confidence, update A according to eq. (11).
Sample batch B ~ B and update 8, ¢ using Lint(B; ¢) (eq. (7)) and Lpoiicy (B; 8) (eq. (8) or eq. (9)).
Every T steps set ¢ < ¢ (similarly, every Ty steps set 8 < 6).
end while

// Inference phase

Sample unknown environment M ~ P.

Collect a trajectory D (or D~ in fixed confidence) according to a policy 7+ (D:) = arg maxa Qo(Dt, a),
until £ = N (or a; = astop)-

Return Hy = arg maxy I,(H|Dn) (or H, = arg max; I4(H|D;) in the fixed confidence)

ICPE: Full Algorithm 37/49
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Numerical Results

We tested ICPE on a range of problems:

» Generalized search problems

» BAl-like problems in Bandit and MDPs (with structure, hidden information, etc...)
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Binary Search
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Search for 47

@ 4 7 10 14 23 45 47 53

‘ Can ICPE meta-learn binary search? \

> Vector with K elements; need to find H* € {1,...,K}.

» Selecting a € {1,..., K} yields a observation z; = —1 or 2 = +1 (depending if a < H*

or not.

K Min Accuracy Mean Stop Time Max Stop Time log, K

8 1.00 2.13+0.12 3 3

16 1.00 2.93+0.12 4 4

32 1.00 Sorll =& @165 5 5

64 1.00 4.50 +0.21 6 6

128 1.00 5.49 + 0.23 7 7

256 1.00 6.61 + 0.26 8 8

Table 1: ICPE performance on the binary search task as K increases.
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Pixel Sampling as Generalized Search

We already saw this example in the introduction.
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Pixel Sampling as Generalized Search

HEEICL

We already saw this example in the introduction.

But is ICPE really learning exploration strategies, or is it just sampling at random?
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Pixel Sampling as Generalized Search

We compare ICPE with Deep Contextual Multi-Armed Bandit [Collier and Llorens, 2018]"

ICPE Deep CMAB Uniform
3 2 3 2 3
L] ° [ ] [ ] L] ]

a 1 a 1 a 1
(] ® ® o ® ®
50 @0 s ®0 50 o0
@ o, P 9, i 9,

[ ] | ] ]
P9 7% 78

» We compare region selection distributions across digit classes using pairwise chi-squared
tests.

» A chord between two digits indicates that their distributions were not significantly
different, with thicker chords representing higher p-values.
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Pixel Sampling as Generalized Search

Agent Accuracy Avg. Regions Used
ICPE 0.91 +0.03 10.09 +0.11
Deep CMAB  0.66 +0.04 7.90 + 0.09
Uniform 0.25 +0.04 10.42 4+ 0.09

Table 2: Accuracy and performance (mean + 95% ClI)
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Bandit Problems with Hidden Structure: Magic Arm Problem

This is a bandit model with Gaussian rewards and a twist:

» One of the arms encodes information about the index of the best arm through its mean
reward value. We call this arm the magic arm.
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Bandit Problems with Hidden Structure: Magic Arm Problem

This is a bandit model with Gaussian rewards and a twist:

» One of the arms encodes information about the index of the best arm through its mean
reward value. We call this arm the magic arm.

» Let's say the index of the magic arm is m € {1,..., K}, fixed. Define the mean reward as
tm = ¢(a*), for some invertible mapping ¢.

» For a # m we let the rewards be distributed according to N (iia, (1 — 0,,,)?) with
om € (0,1) being the standard deviation of arm m=> the smaller o,,,, the more likely we

Magic A oyld sample arm m. w0



Bandit Problems with Hidden Structure: Magic Arm Problem

We compared with the BAI version of Information Directed Sampling (IDS)
[Russo and Van Roy, 2018] (based on posterior sampling, and we use the I-net of ICPE).

Average Stopping Time

1.05
—e— ICPE —e— ICPE 10 —o— ICPE
175 —=— IiDS = 1IDS =~ HDS
150 —> Bound (Theorem B.8) 1.00 == Target Confidence 08
2
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<
10.0 © L2
£ Sos
75 8 0 v S =
R
5.0 02
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. e —X . 0.0
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Standard Deviation of Magic Action
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Bandit Problems with Hidden Structure: Magic Arm Problem

We compared with the BAI version of Information Directed Sampling (IDS)
[Russo and Van Roy, 2018] (based on posterior sampling, and we use the I-net of ICPE).

1.05 1.0
s —e— ICPE —e— ICPE 2 —— ICPE
—=— DS = DS —#- -IDS
E1s0 gt Bound (Theorem B.8) 1.00 ---- Target Confidence 08
= 2
2125 a o
£ $oos Gos
2100 & <
a e 404 E
[} = o
o 75 5 0 $04
> S I L 2
§ s0 ®
z 085 02
25 o ey
Toe-X 0.0
0. 0.
0.0 02 04 056 038 10 0.0 02 04 06 038 10 0.0 02 04 056 038 10
Standard Deviation of Magic Action Standard Deviation of Magic Action Standard Deviation of Magic Action

Left: average number of samples; Middle: average accuracy at the stopping time; Right: fraction of

times the magic action was selected.

The distribution of the magic arm is N'(¢(a*),02,),0m € (0,1). For a # m is

M&Mﬂ\?P(a]ﬁlem_ U’m)2)' 44/49
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Directions




Conclusions!®

Thank you for reaching this point! ara—

10Credits to Flaticon.com for some of the logos used in this presentation.
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Conclusions!®

Thank you for reaching this point! Plenty of questions are still open, and we look for .d.!
to collaborations:

» What is a good neural architecture for sequential problems? And, how do we enable long
horizons?

» We assumed access to a perfect simulator. What if there is some misspecification?

» Can we move from a Bayesian setting to a frequentist one? (i.e., adversarial).

» Plenty of theoretical questions still left unanswered (contact me for details!).

Thank you for listening!

10Credits to Flaticon.com for some of the logos used in this presentation.
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ICPE: Fixed Budget vs Fixed Confidence

These two objectives capture the main operational modes of pure exploration: “stop
when certain” and “maximize accuracy over a fixed sampling budget”.

» Note that we did not impose any restriction of the problem, except for the prior
distribution. Compared to classical results, our setting generalizes MDP and Bandit
problems.

» Classically the inference rule I is a maximum likelihood estimator. However, it's hard to
compute for complex models. That's why we also optimize over inference rules.
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