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Introduction



What is Pure Exploration? [Chernoff, 1959]
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What is Pure Exploration? [Chernoff, 1959]

Pure Exploration is the Machine Learning term for what a statistician would call active

sequential hypothesis testing1 [Naghshvar and Javidi, 2013].

1Wouter Koolen, https://homepages.cwi.nl/~wmkoolen/PureExploration18/#why.
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What is Pure Exploration? [Chernoff, 1959]

Pure exploration is about inferring an underlying true hypothesis. How should you

allocate experiments based on what you can infer from their outcomes?
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Pure Exploration vs Regret Minimization

Probably you are familiar with the ”Exploration/Exploitation” trade-off in

Reinforcement Learning (RL) [Lai and Robbins, 1985].
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Pure Exploration vs Regret Minimization

Probably you are familiar with the ”Exploration/Exploitation” trade-off in

Reinforcement Learning (RL) [Lai and Robbins, 1985].

Exploration vs Exploitation: accumulate reward by choosing good actions !

Yet, to know that an action is good, you need to explore...

But...what is the difference between Pure Exploration and Regret Minimization?

▶ Pure Exploration is the rebellious counter-movement: “pure” refers to how fast it

learns, with no regard for how much it earns.
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Motivation

For what problems is it useful?

1. Minimizing the number of DNA-based tests performed to accurately detect cancer

[Gan et al., 2021] .

2. Improving recommendations in recommender systems [Resnick and Varian, 1997] .

3. Quickly identifying a faulty sensor [Hero and Cochran, 2011] .

4. Active search on the celestial sphere .�



�
	Let’s check some examples more in detail.
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Example: Digit Detection

�



�
	Classify the image using the least number of pixel patches.
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Example: Best Arm Identification (BAI) [Audibert and Bubeck, 2010]

Consider a Multi-Armed Bandit problem with K arms [Lattimore and Szepesvári, 2020]:

▶ You can select one arm a at the time and observe a random reward with mean value µa.

▶ The optimal arm is a⋆ = argmaxa µa.

▶ How do we quickly identify the optimal arm a⋆ with some confidence level δ ∈ (0, 1)?
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Some Problems and Limitations

How do we compute adaptive exploration strategies?

Adaptive Exploration

A truly intelligent agent should tailor exploration to the difficulty of the problem; treating

all problems the same is not a sign of intelligent behavior. (self cit.)

=⇒ The solution should adapt to the problem at hand.

Limitations 8/49
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Some Problems and Limitations

�



�
	It’s hard to find optimal solutions to pure exploration problems.

How does the solution look like? Informally, the solution is characterized by this problem:

sup
π︸︷︷︸

Exploration policy

Confusing model︷ ︸︸ ︷
inf

P ′∈Alt(P )
Ex∼ρπ [KL(P (x), P ′(x))]

▶ ρπ is the data distribution induced by π and P is the true data model.

▶ P ′ is a confusing model: different from P , but optimized so that it’s statistically similar

when collecting data with π.

⇒ Find π that maximizes the collected evidence!
Limitations 9/49
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Some Problems and Limitations

▶ Recent advances in BAI showed how to characterize the optimal exploration strategy in

simple i.i.d. Bandit models [Garivier and Kaufmann, 2016]

▶ Most results are limited to tabular problems, and extending to more complex settings is

difficult.

▶ For tabular Markov Decision Processes (MDPs) the optimal exploration strategy is

characterized by a non-convex problem [Al Marjani et al., 2021].
▶ In some cases it is not possible to identify the underlying true hypothesis [Russo et al., 2025].
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Our Solution: ICPE

Can we design a simple, but general, method that learns how to solve pure exploration

problems efficiently?
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Our Solution: ICPE

Can we design a simple, but general, method that learns how to solve pure exploration

problems efficiently?

▶ In-Context Pure Explorer (ICPE) is a

Transformer-based architecture

meta-trained on a family of tasks to learn

an exploration policy.

▶ ICPE is a model that transfers in-context:

at inference time, gathers evidence on new

tasks and infers the true hypothesis

without parameter updates .
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ICPE: Modeling



ICPE: Intro

Pure exploration is about inferring an underlying true hypothesis. How should you

allocate experiments based on what you can infer from their outcomes?

An agent π interacts

with the

environment and

collects data.

It’s a sequential problem. In each round t you observe xt and choose an

experiment (action) at. We model it:

1. Define the hypothesis space H.
2. Define the query/action/experiment space A (i.e., the ways you can

interact).

3. Define the observation space X (what you observe after an interaction).

4. Define the dynamics P of the environment: P (xt+1|x1, a1, . . . , xt, at)

(i.e., how does the environment react after selecting at? how does it

depend on past interactions?)
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ICPE: Intro

�



�
	What about the true hypothesis?

⇒ we assume there exists a functional h⋆ mapping P 7→ H, dynamics to hypotheses. We set

H⋆ = h⋆(P ).

Definition (Environment)

We define an environment to be M = (X ,A, P,H⋆).
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ICPE: Modeling Example

How do we model the Best Arm Identification problem?

▶ H⋆ = argmaxa µa (arm with highest mean reward).

▶ P (·|a) is the reward distribution when you select action a ∈ {1, . . . ,K}.
▶ Upon selecting action a you observe x ∼ P (·|a), the reward.

BAI Example 14/49



ICPE: Modeling Example

How do we model the Best Arm Identification problem?

▶ H⋆ = argmaxa µa (arm with highest mean reward).

▶ P (·|a) is the reward distribution when you select action a ∈ {1, . . . ,K}.
▶ Upon selecting action a you observe x ∼ P (·|a), the reward.

BAI Example 14/49



ICPE: Modeling Example

How do we model the Best Arm Identification problem?

▶ H⋆ = argmaxa µa (arm with highest mean reward).

▶ P (·|a) is the reward distribution when you select action a ∈ {1, . . . ,K}.
▶ Upon selecting action a you observe x ∼ P (·|a), the reward.

BAI Example 14/49



ICPE: Modeling Example

How do we model the Best Arm Identification problem?

▶ H⋆ = argmaxa µa (arm with highest mean reward).

▶ P (·|a) is the reward distribution when you select action a ∈ {1, . . . ,K}.
▶ Upon selecting action a you observe x ∼ P (·|a), the reward.

BAI Example 14/49



ICPE: Prior and Objectives

Last ingredient is the assumption that we have a prior P over a set of environmentsM,

representing our belief of M .
:

1. Fixed Budget: maximize evidence

over a horizon.

2. Fixed Confidence: quickly collect

evidence.

Modeling 15/49
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ICPE: Prior and Objectives

First objective:

Definition (Fixed Budget Problem)

Given a horizon N ∈ N, the learner chooses a policy π and inference rule I maximizing the

evidence after N queries:

sup
π,I

Pπ (IN (DN ) = H⋆) . (1)

where

▶ DN = (x1, a1, . . . , aN , xN ) is the set of data collected up to time N 1.

▶ π(·|Dt) is the exploration policy of the agent (mapping Dt → ∆(A) from data to

probabilities over actions).

▶ I : Dt → H is the inference rule of the agent, mapping data to a hypothesis.

1x1 is the initial observation.
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ICPE: Prior and Objectives

Second objective:

Definition (Fixed Confidence Problem)

Given a target error level δ ∈ (0, 1), minimize the number of samples τ needed to identify H⋆

with confidence 1− δ:

inf
τ,π,I

Eπ [τ ] s.t. Pπ (Iτ (Dτ ) = H⋆) ≥ 1− δ. (2)

where

▶ Dτ = (x1, a1, . . . , aτ , xτ ) is the set of data collected up to time τ 2.

▶ π(·|Dt) is the policy of the agent (mapping Dt → ∆(A) from data to probabilities over

actions).

▶ I : Dt → H is the inference rule of the agent, mapping data to a hypothesis.

2x1 is the initial observation.
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ICPE: How to learn π, I?

An agent π interacts

with the

environment and

collects data.

▶ All very good...but how do we learn π, I, τ? How do we optimize

inf
τ,π,I

Eπ [τ ] s.t. Pπ (Iτ (Dτ ) = H⋆) ≥ 1− δ.

or the fixed budget objective?

▶ Intuitively, optimizing π seems an RL problem... and learning I seems

like a supervised learning problem.

▶ We need a bit of theory that can point us out in the right direction.

Modeling 18/49
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ICPE: Some Theory



Why Theory?

▶ First, we see that optimizing the inference rule I amounts to computing a posterior

distribution3.

▶ Secondly, the policy π can be learned using RL with an appropriate reward function.

Importantly, the reward function used for training π emerges naturally from the problem

formulation, and it is not a user-chosen criterion, making it a principled information-

theoretical reward function.

3The results we present here hold for general continuous observation/action spaces (but finite number of

hypotheses).
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Optimal Inference Rule

Idea: can we find an inference rule that is π-independent to simplify the optimization problem?

Proposition

Let t ≥ 1 and a policy π. The optimal inference rule maximizing supI Pπ(H⋆ = It(Dt)) is

given by

I⋆(Dt) = argmax
H∈H

P(H⋆ = H|Dt)
4,

where P(H⋆ ∈ ·|Dt) is the posterior distribution of H⋆.

In other words, the optimal prediction is the hypothesis that maximizes the posterior

distribution of the true hypothesis.

4Dt is a possible trajectory (x1, a1, . . . , xt).
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Optimal Policy in Fixed Budget

Consider the fixed budget setting. Using the previous result, we can immediately conclude

that for all t ≥ 1

sup
π,I

Pπ(H⋆ = I(Dt)) = sup
π

Eπ[r(Dt)]

where r(Dt) := maxH∈H Pt(H
⋆ = H|Dt). Does this ring a

?

�



�
	We can use RL!
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Wait... are we back to RL?

�



�
	We can use RL!

Wait.. we use RL to solve an exploration problem? “It’s like hiring a tour guide. . . who asks

you to show them around first!”

Is it always an RL problem at the end?
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Optimal Exploration Policy in Fixed Budget

sup
π,I

Pπ(H⋆ = I(Dt)) = sup
π

Eπ[r(Dt)]

where r(Dt) := maxH∈H Pt(H
⋆ = H|Dt).

Proposition (Policy Optimality)

For any t ≥ 1 the policy π⋆(Dt) = argmaxa∈A Qt(Dt, a) is optimal, where

Vt(Dt) = max
a∈A

Qt(Dt, a), Qt(Dt, a) =

∫
X
Vt+1(Dt, a, x

′︸ ︷︷ ︸
=Dt+1

) P̄t(dx
′|Dt, a)︸ ︷︷ ︸

posterior distribution of x′

, t < N,

with VN (DN ) = maxH∈H Pt(H
⋆ = H|DN ).
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The Fixed Confidence Setting

Recall the fixed confidence setting

inf
τ,π,I

Eπ [τ ] s.t. Pπ (Iτ (Dτ ) = H⋆) ≥ 1− δ.

▶ τ indicates the number of samples... formally, it’s a stopping rule. Informally, this rule

tells you if you should stop or continue given the data Dt.

▶ First simplification: we define a stopping action astop and set A ← A∪ {astop},
τ = inf{t ∈ N : at = astop} ⇒ the policy π decides when to stop.

▶ Second simplification: we study the dual problem!.
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The Fixed Confidence Setting

�



�
	We then study the dual problem

inf
λ≥0

sup
π,I

Vλ(π, I), where Vλ(π, I) := −Eπ[τ ] + λ [Pπ (I(Dτ ) = H⋆)− 1 + δ] .

▶ Can we use the optimal inference rule result? Yes.

▶ Can it be simplified to an RL problem? Yes.

▶ Do we get the δ-probably correct guarantees? Not immediately.
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The Fixed Confidence Setting: Optimal Exploration Policy

inf
λ≥0

sup
π,I

Vλ(π, I), where Vλ(π, I) := −Eπ[τ ] + λ [Pπ (I(Dτ ) = H⋆)− 1 + δ] .

Define the reward

rλ(Dt, a) = −1{a̸=astop} + λ1{a=astop} max
H

P(H⋆ = H|Dt),

and the Q-function

Qλ(Dt, a) = rλ(Dt, a) + 1{a̸=astop}Ext+1|(Dt,a)

[
max
a′

Qt+1,λ ((Dt, a, xt+1), a
′)
]
.

where xt+1|(Dt, a) indicates the posterior distribution of xt+1 given (Dt, a).
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The Fixed Confidence Setting: Optimal Exploration Policy

rλ(Dt, a) = −1{a̸=astop} + λ1{a=astop} max
H

P(H⋆ = H|Dt),

Qλ(Dt, a) = rλ(Dt, a) + 1{a̸=astop}Ext+1|(Dt,a)

[
max
a′

Qt+1,λ ((Dt, a, xt+1), a
′)
]
.

Proposition

Let π⋆
λ(Dt) = argmaxa∈A Qλ(Dt, a). Then, for λ ≥ 0 the pair (I⋆, π⋆

λ) , (with I⋆ as before),

is an optimal solution of supπ,I Vλ(π, I). Furthermore, under suitable identifiability

conditions5, any maximizer λ⋆ guarantees that π⋆
λ⋆ satisfies the δ-correctness criterion.

We can do RL! Rejoice!
5See the appendix for more details.
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ICPE: Practical Design



Now What?

Ok we can use RL...What else do we have? A prior.

If we have a simulator that can sample from this prior...

...we could then learn π, I using data from this simulator...

...and then use π, I on the real problem.

Anything else? Yes, we use Transformers to handle the sequence of data Dt.
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Training vs Inference

Training time

Inference time

▶ At training time ICPE interacts with a simulator: each episode draws an instance M ∼ P
and generates a trajectory.

▶ We maintain a buffer B to store the training data.
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Training phase

Let us consider the fixed confidence setting. What do we have?

I⋆(Dt) = argmax
H∈H

P(H⋆ = H|Dt),

rλ(Dt, a) = −1{a̸=astop} + λ1{a=astop} max
H

P(H⋆ = H|Dt),

Qλ(Dt, a) = rλ(Dt, a) + 1{a̸=astop}Ext+1|(Dt,a)

[
max
a′

Qt+1,λ ((Dt, a, xt+1), a
′)
]
.
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Training phase

Let us consider the fixed confidence setting. What do we have?

I⋆(Dt) = argmax
H∈H

P(H⋆ = H|Dt)⇒ learn I(H|Dt) = P(H⋆ = H|Dt) ,

rλ(Dt, a) = −1{a̸=astop} + λ1{a=astop} max
H

I(H|Dt),

Qλ(Dt, a) = rλ(Dt, a) + 1{a̸=astop}Ext+1|(Dt,a)

[
max
a′

Qt+1,λ ((Dt, a, xt+1), a
′)
]
.

General idea: cross-entropy loss to learn I and your favorite off-policy Deep-RL technique to

learn π.
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Training phase: inference rule

Inference rule: parametrize I by ϕ. We train it with the loss6

Linf(ϕ) = −
1

|B|
∑

(Dt,at,xt+1,H⋆)∈B

log Iϕ(H
⋆|Dt+1). (3)

where B ∼ B is a batch of data from the buffer.

6In expectation this is (up to an additive constant) equivalent to minimizing the KL-divergence between

P(H⋆ = H|D) and Iϕ(H|D).
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Training phase: exploration policy

Exploration policy:

r(Dt, a) = −1{a̸=astop} + λ1{a=astop} max
H

Iϕ̄︸︷︷︸
target network

(H|Dt),

Qθ(Dt, a) = r(Dt, a) + 1{a̸=astop}Ext+1|(Dt,a)

max
a′

Qθ̄︸︷︷︸
target network

((Dt, a, xt+1), a
′)

 .

▶ We use target parameters ϕ̄ and θ̄ to stabilize training7. 8

7Target networks were introduced in DQN [Mnih et al., 2013]

8We also use a cost variable c instead of λ to avoid the product λ · I (see appendix for details).

ICPE: Training phase 34/49



Training phase: exploration policy

r(Dt, a) = −1{a̸=astop} + λ1{a=astop} max
H

Iϕ̄(H|Dt),

Qθ(Dt, a) = r(Dt, a) + 1{a̸=astop}Ext+1|(Dt,a)

[
max
a′

Qθ̄ ((Dt, a, xt+1), a
′)
]
.

We use this DQN-like loss

Lpolicy(B; θ) =
1

|B|
∑

(Dt,at,xt+1)∈B

[
1{at ̸=astop} ·

(
−1 + max

a
Qθ̄(Dt+1, a)−Qθ(Dt, at)

)2

(4)

+
(
λmax

H
Iϕ̄(H|Dt)−Qθ(Dt, astop)

)2
]
, (5)

9
9The Q-value of astop can be updated at any time, allowing retrospective evaluation of stopping.
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Training phase: Lagrangian variable

Last, but not least, we need to update λ!

inf
λ≥0

sup
π,I

Vλ(π, I), where Vλ(π, I) := −Eπ[τ ] + λ [Pπ (I(Dτ ) = H⋆)− 1 + δ] .

We learn λ using a gradient descent update:

λ← max [0, λ− β (p̂− 1 + δ)] , where p̂ =
1

K

K∑
i=1

1{argmaxH Iϕ(H|D(i)
τ )}=H⋆

i }
. (6)

using K i.i.d. trajectories {(D(i)
τ , H⋆

i )}Ki=1 with fixed (θ, ϕ).
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Full algorithm
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Numerical Results

We tested ICPE on a range of problems:

▶ Generalized search problems

▶ BAI-like problems in Bandit and MDPs (with structure, hidden information, etc...)

We look at 3 problems:

1. Can ICPE meta-learn binary search?

2. Can ICPE learn pixel-sampling for classification?

3. Can ICPE discover, and exploit, hidden information in BAI?
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Binary Search

�



�
	Can ICPE meta-learn binary search?

▶ Vector with K elements; need to find H⋆ ∈ {1, . . . ,K}.
▶ Selecting a ∈ {1, . . . ,K} yields a observation xt = −1 or xt = +1 (depending if a < H⋆

or not.
K Min Accuracy Mean Stop Time Max Stop Time log2 K

8 1.00 2.13± 0.12 3 3
16 1.00 2.93± 0.12 4 4
32 1.00 3.71± 0.15 5 5
64 1.00 4.50± 0.21 6 6

128 1.00 5.49± 0.23 7 7
256 1.00 6.61± 0.26 8 8

Table 1: ICPE performance on the binary search task as K increases.
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Pixel Sampling as Generalized Search

�



�
	Can ICPE learn to select patch of pixels for classification?

We already saw this example in the introduction.

But is ICPE really learning exploration strategies, or is it just sampling at random?

Pixel Sampling as Generalized Search 40/49
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Pixel Sampling as Generalized Search

We compare ICPE with Deep Contextual Multi-Armed Bandit [Collier and Llorens, 2018].
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▶ We compare region selection distributions across digit classes using pairwise chi-squared

tests.

▶ A chord between two digits indicates that their distributions were not significantly

different, with thicker chords representing higher p-values.
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Pixel Sampling as Generalized Search

Agent Accuracy Avg. Regions Used

ICPE 0.91± 0.03 10.09± 0.11

Deep CMAB 0.66± 0.04 7.90± 0.09

Uniform 0.25± 0.04 10.42± 0.09

Table 2: Accuracy and performance (mean ± 95% CI)
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Bandit Problems with Hidden Structure: Magic Arm Problem

This is a bandit model with Gaussian rewards and a twist:

▶ One of the arms encodes information about the index of the best arm through its mean

reward value. We call this arm the magic arm.

▶ Let’s say the index of the magic arm is m ∈ {1, . . . ,K}, fixed. Define the mean reward as

µm = ϕ(a⋆), for some invertible mapping ϕ.

▶ For a ̸= m we let the rewards be distributed according to N (µa, (1− σm)2) with

σm ∈ (0, 1) being the standard deviation of arm m⇒ the smaller σm, the more likely we

should sample arm m.
Magic Arm Problem 43/49
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Bandit Problems with Hidden Structure: Magic Arm Problem

We compared with the BAI version of Information Directed Sampling (IDS)

[Russo and Van Roy, 2018] (based on posterior sampling, and we use the I-net of ICPE).
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The distribution of the magic arm is N (ϕ(a⋆), σ2
m), σm ∈ (0, 1). For a ̸= m is
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Conclusions and Future
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Conclusions10

Thank you for reaching this point! Plenty of questions are still open, and we look forward

to collaborations:

▶ What is a good neural architecture for sequential problems? And, how do we enable long

horizons?

▶ We assumed access to a perfect simulator. What if there is some misspecification?

▶ Can we move from a Bayesian setting to a frequentist one? (i.e., adversarial).

▶ Plenty of theoretical questions still left unanswered (contact me for details!).

Thank you for listening!

10Credits to Flaticon.com for some of the logos used in this presentation.
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ICPE: Fixed Budget vs Fixed Confidence

These two objectives capture the main operational modes of pure exploration: “stop

when certain” and “maximize accuracy over a fixed sampling budget”.

▶ Note that we did not impose any restriction of the problem, except for the prior

distribution. Compared to classical results, our setting generalizes MDP and Bandit

problems.

▶ Classically the inference rule I is a maximum likelihood estimator. However, it’s hard to

compute for complex models. That’s why we also optimize over inference rules.
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