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Best Arm Identification with Fixed Confidence

K arms with reward distributions νa with a ∈ {1, . . . ,K}. Assume (νa)a belong to the family

of single-parameter exponential distributions, with µa = Er∼νa
[r].

µ1 µ2 µ3 µ4 µ5

▶ Sequential: In round t the learner pulls arm at ∈ [K] and receives the reward rt ∼ νat
.

▶ Best Arm Identification objective: quickly find the optimal arm a⋆ = argmaxa µa with

confidence δ ∈ (0, 1/2) ⇒ minimize sample complexity E[τ ] subject to P(âτ ̸= a⋆) ≤ δ.

▶ τ is a random stopping time and âτ is the estimated best arm at τ .

Let’s introduce a graph structure
2/18
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Graph Structure

A

B

CD

E

1. Bandit model: when selecting an action, you observe the reward of that action.

2. Revealing action: when selecting A, you observe the reward of all other nodes.

3. Ring graph: you observe only the reward of two neighboring nodes.

4. Loopless clique: all connected.
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BAI with a Graph
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BAI Problem

Goal: Estimate a⋆ as quickly as possible subject to P(âτ ̸= a⋆) ≤ δ.

▶ Graph characterized by the adjacency matrix G ∈ [0, 1]K×K .

▶ When selecting a the agent observes (Za,u)u∈[K], where Za,u = Ya,uRu for all nodes u,

with Ya,u ∼ Ber(Ga,u) and Ru ∼ νu.

▶ What is the sample complexity lower bound? Can we use the graph to speed-up learning?
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However, the agent may/may not know the graph. Two settings:

▶ Uninformed setting: The learner does not know G nor which edge is activated at each

time-step t.

▶ Informed setting: The learner either knows G or which edge was activated after choosing

a node.
4/18
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Sample Complexity Lower

Bounds



Sample Complexity Lower Bounds - Uninformed Setting

Theorem

For any δ-PC algorithm and any model ν with reward distributions {νu}u∈V with continuous

support, in the uninformed setting1 we have that

Eν [τ ] ≥ T ⋆(ν) log
1

2.4δ
, (1)

(T ⋆(ν))−1︸ ︷︷ ︸
information rate

= sup
ω∈∆(V )︸ ︷︷ ︸

sampling policy

min
u̸=a⋆

(mu +ma⋆) I ma⋆
mu+ma⋆

(νa⋆ , νu)︸ ︷︷ ︸
Generalized Jensen-Shannon divergence

s.t. mu︸︷︷︸
observation rate

=
∑

v∈Nin(u)

ωvGv,u ∀u ∈ V.

Concretely, for Gaussian rewards N (µa, λ
2)

T ⋆(ν) = inf
ω∈∆(V )

max
u ̸=a⋆

(
m−1

u +m−1
a⋆

) 2λ2

∆2
u

s.t. m = G⊤ω (where ∆u = µa⋆ − µu).

1Uninformed setting: The learner does not know G nor which edge is activated at each time-step t 5/18
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An Example: The Loopy Star
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1− p

(1− 2p)+(1− 2p)+

(1− 2p)+

Loopy star graph. To each edge is associated an activation probability (obs. that (x)+ = max(x, 0)).

We consider Gaussian rewards, with λ = 1, µ5 = 1 and µu = 0.5, u ∈ {1, . . . , 4}.

▶ This graph is the union of a bandit feedback graph and revealing action graph. Removing

any self-loop changes the minimax regret from Θ̃(
√
α(G)T ) to Θ̃(T 2/3) [ACBDK15].
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The Loopy Star
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Loopy star example with r = 1/4. The solid lines depict T ⋆(ν) for q = 1 and q = 1/4 for different

values of p. Similarly, on the right axis, the dashed lines show ∥G⊤ω⋆∥2, which indicates the amount

of information gathered per time-step.
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Sample Complexity Lower Bounds - Uninformed Setting [Proof 1/3]

Overall proof idea: take the log-likelihood ratio (LLR) of the observed data up to time τ

between the true model ν and an alternative model ν′ that admits a different optimal vertex.

▶ Selecting the model ν′ that minimizes the LLR yields a lower bound on the sample

complexity.

Step 1 (LLR): Consider two bandit models ν = {G, (νu)u}, ν′ = {G′, (ν′u)u}. For each v, νv
and ν′v have, respectively, densities fv and f ′

v. Zv,u = Yv,uRu has density fv,u (sim. f ′
v,u)

Lt = ln
dPν(V1, Z1, . . . , Vt, Zt)

dPν′(V1, Z1, . . . , Vt, Zt)
, (Vt is the chosen vertex; Zt are the observed {Zv,u}v,u at time t)

=
∑
u∈V

∑
v∈Nin(u)

Nv(t)∑
j=1

ln

Ç
fv,u(Wj,(v,u))

f ′
v,u(Wj,(v,u)))

å
, (Wj,(v,u) is the j-th obs. of Zv,u)

=⇒Eν [Lt] =
∑
u∈V

∑
v∈Nin(u)

Eν [Nv(t)]KL(νv,u, ν
′
v,u).

8/18
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Sample Complexity Lower Bounds - Uninformed Setting [Proof 2/3]

Using an information processing inequality[KCG16], we can lower bound the expected LLR at τ

as

Eν [Lτ ] ≥ log(1/(2.4δ)),

and by letting ωv = Eν [Nv(τ)]/Eν [τ ], we obtain

Eν [τ ]︸ ︷︷ ︸
sample complexity

∑
u∈V

∑
v∈Nin(u)

ωvKL(νv,u, ν
′
v,u) ≥ log(1/(2.4δ)).

Lastly, because of the nature of the problem, we can prove that for continuous rewards we have2

KL(νv,u, ν
′
v,u) = kl(Gv,u, G

′
v,u)︸ ︷︷ ︸

Bernoulli KL divergence

+Gv,u KL(νu, ν
′
u)︸ ︷︷ ︸

KL divergence of the rewards

.

2Recall that Gv,u is the edge activation probability (probability of observing u when selecting v).
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Sample Complexity Lower Bounds - Uninformed Setting [Proof 3/3]

Step 2 (Optimizing ν′): We focus on alternative models ν′ that admit a different optimal

vertex

Alt(ν) = ∪v ̸=a⋆Altv(ν), Altv(ν) = {ν′ | µ′
v > µ′

a⋆}.
Choose ν′ as to minimize the LLR!

inf
ν′∈Alt(ν)

∑
u∈V

∑
v∈Nin(u)

ωvKL(νv,u, ν
′
v,u)

= min
u̸=a⋆

inf
ν′:µ′

u≥µ′
a⋆

∑
v∈Nin(u)

ωvGv,uKL(νu, ν
′
u) +

∑
w∈Nin(a⋆)

ωwGw,a⋆KL(νa⋆ , ν′a⋆),

= min
u̸=a⋆

inf
ν′:µ′

u≥µ′
a⋆

muKL(νu, ν
′
u) +ma⋆KL(νa⋆ , ν′a⋆). (mu :=

∑
v∈Nin(u)

ωvGv,u)

Therefore, by optimizing over ν′ as in [GK16, Lemma 3] we obtain

min
u̸=a⋆

(mu +ma⋆)I ma⋆
mu+ma⋆

(νa⋆ , νu) ≥ log(1/(2.4δ)).

10/18
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Sample Complexity Lower Bounds - Uninformed Setting - Bernoulli

▶ For Bernoulli rewards something funny happens in the uninformed setting3...

▶ Observing Za,u = 0 can mean either “edge did not fire” or “reward was 0,”

P (Z = 0) = 1−Gv,u µu.

Because the learner never sees which edge fired, it is possible to construct an alternative model

resemblingly perfectly the true model, under which an alternative arm is optimal!

Proposition

If (νu)u∈V are Bernoulli distributions with parameters (µu)u∈V , then a⋆ is unidentifiable, in

the sense that (T ⋆(ν))−1 = 0.

3Uninformed setting: The learner does not know G nor which edge is activated at each time-step t.
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Sample Complexity Lower Bounds - Informed Setting - Bernoulli

What about the informed setting4?

▶ All good here, and the original sample complexity holds also for Bernoulli rewards.

Eν [τ ] ≥ T ⋆(ν) log
1

2.4δ
(2)

where

(T ⋆(ν))−1 = sup
ω∈∆(V )

min
u̸=a⋆

(mu +ma⋆)I ma⋆
mu+ma⋆

(νa⋆ , νu) s.t. m = G⊤ω

4Informed setting: The learner either knows G or which edge was activated after choosing a node.
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TaS-FG: Track And Stop for

Feedback Graphs



Components of a Strategy

A strategy is defined by

▶ Sampling rule

▶ Stopping rule

▶ Recommendation rule (we use the MLE)
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TaS-FG: Sampling Rule

How do we design an algorithm that approaches the optimal sample complexity?

T (ω; ν)−1 = min
u̸=a⋆

(mu +ma⋆)I ma⋆
mu+ma⋆

(νa⋆ , νu) s.t. m = G⊤ω

The solution ω⋆ ∈ arg infω∈∆(V ) T (ω; ν) provides the best proportion of draws.

Design

▶ Ensure that Nt/t (average selection frequency) tracks ω⋆(t) (computed w.r.t. ν̂(t), the

estimated model), where Nt is the visitation vector N(t) :=
î
N1(t) . . . NK(t)

ó⊤
.

▶ Sampling rule:

At ∈
{
argminu∈St

Nu(t) ∃u : Nu(t) <
√
t−K/2

argminu∈V Nu(t)−
∑t

n=1 ω
⋆
u(n) otherwise

, (3)

ensures limt→∞ infω∈C⋆(ν) ∥N(t)/t− ω∥∞ → 0 (C⋆ is the set of optimal allocations)5.

5Tracking a convex combination of all past solutions guarantees convergence to a unique point in C⋆.
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TaS-FG: Stopping Rule

When do we stop?

T (ω; ν)−1 = min
u̸=a⋆

(mu +ma⋆)I ma⋆
mu+ma⋆

(νa⋆ , νu) s.t. m = G⊤ω

Stopping Rule

▶ The lower bound tells us that τ ∼ T ⋆(ν) log(1/δ). But we don’t know the model!

Additional price to pay O(log log(t)).

▶ Stopping as soon as

t ≈ T (N(t)/t; ν̂(t))6
ï
log

Å
K − 1

δ

ã
+O(log log(t))

ò
guarantees correctness

Pν(τ < ∞, âτ ̸= a⋆(µ)) ≤ δ.

▶ With the previous sampling rule, we can guarantee lim supδ→0
Eν [τ ]
ln(1/δ) ≤ T ⋆(ν).

6Empirical characteristic time based on the MLE 15/18
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Numerical Results
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Conclusions

Thank you for listening!

▶ Github repo:

https://github.com/rssalessio/Pure-Exploration-with-Feedback-Graphs
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